七年级关于数学的优秀教案范本(精选3篇)

时间:2023-07-12

初一数学教案设计 篇1

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系。

教学重点: 等腰三角形的判定定理及推论的运用

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

II引入新课

1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2、引导学生根据图形,写出已知、求证。

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

4、引导学生说出引例中地质专家的测量方法的根据。

III例题与练习

1、如图2

其中△ABC是等腰三角形的是 [ ]

2、①如图3,已知△ABC中,AB=AC、∠A=36°,则∠C______(根据什么?)。

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______、

④若已知 AD=4cm,则BC______cm、

3、以问题形式引出推论l______、

4、以问题形式引出推论2______、

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。

练习:5、(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E、问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1、判定一个三角形是等腰三角形有几种方法?

2、判定一个三角形是等边三角形有几种方法?

3、等腰三角形的性质定理与判定定理有何关系?

4、现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12、3第5、6题

初一第一学期数学教学计划 篇2

教学目标 知识与技能

从实际生活中感受有序数对的意义,并会确定平面内物体的位置

过程与方法通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

情感态度

与价值观 培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣

重点有序数对的概念及平面内确定点的方法

难点对有序数对中的有序的理解,利用有序数对表示平面内的点

教学方法以通俗、活泼的素材引入本节课内容;本节采用情景建构教学法

一 教学流程

(一)创设情境、导入新课

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

追问:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它们意义相同吗?

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

(二)合作交流、探究学习

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

(三)应用迁移、巩固提高

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

(四)回顾反思、拓展升华

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

(五)[拓展应用]

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

(六)布置作业

自由设计 二选一

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

教学反思

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率。

初一数学教案 篇3

大家都听说过一句名言:“世界上不是缺少美,而是缺少发现美的眼睛”,大家知道这句话是谁说的吗?不知道没关系,大家记住下一句名言就好:“世界上不是缺少数学,而是缺少发现数学的眼睛——李老师语录”,那这个著名的李老师是谁呢?远在天边,近在眼前。不要太惊讶,想要签名的下课来找我就行。

好,那我们接下来就用发现数学的眼睛来看一看,生活中常见的几何体都有哪些物体,分别是什么形状?水杯,篮球,冰激凌,金字塔,黑板擦。分别对应圆柱,球,圆锥,棱锥,棱柱。其中长方体,正方体是特殊的棱柱。

好了,几何体我们都了解了,面对这些杂乱无章的几何体是不是感觉很乱,接下来我们就给几何体分分类:

一、常见几何体分类

1、 按照柱、锥、球分类

圆柱

柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱。

锥圆锥

棱锥

2、 按照有无顶点分类

生活中的立体图形

3、 按照有无曲面分类

二、棱柱(直)

1、 基本概念

(1) 棱:在棱柱中,任何相邻的两个面的交线叫做棱。

(2) 侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱。

2、 特征

(1) 棱柱的所有侧棱长相等。

(2) 棱柱的上下底面完全相同且都是多边形。

(3) 棱柱的侧面都是长方形。

(4) n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

3、 分类

按照底面多边形的边数分类,底面几边形就是几棱柱。

三、图形的构成元素

点:线与线橡胶的地方就是点。

1 线:面与面相交的地方就是线。

面:包围着体的是面。

2、联系

点动成线,线动成面,面动成体。

展开与折叠

一、正方体的展开图(11种)

1-4-1型:(6种)

2-3-1型(3种)

2-2-2型(1种)

3-3型(

1种)

二、正方体的折叠

展开图中不出现一字型、田字形、凹字形,2-4型,若有此形状的展开图则折不成正方体。

三、总结规律:

一线不过四,

田凹应弃之;

相间、Z端是对面,

间二、拐角邻面知。

四、常见几何体的展开图

三、截一个几何体

一、正方体的截面

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形

不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形

二、常见几何体截面

四、从三个方向看物体的形状

一、三视图

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

二、联系

主俯长对正,主左高平齐,俯左宽相等。

三、画法

一看,二画,三查(尺寸,虚实)

读书破万卷下笔如有神,以上就是虎知道为大家整理的4篇《七年级关于数学的优秀教案范本》,希望对您有一些参考价值。

更多范文

热门推荐