数学建模的应用(6篇)
时间:2024-02-21
时间:2024-02-21
关键词:数学建模初中数学应用题教学运用
《数学课程标准》(实验稿)指出:数学建模可以有效描述自然现象和社会现象。强调学生从已有的生活经验出发,让学生亲身经历将实际问题抽象成相应的数学模型。在初中数学教学中引入数学建模,适当开展教学建模活动,有利于培养学生能力。数学课程多次体现“问题情境――建立数学模型――求解――解释与应用的基本过程。在初中数学教学中数学建模要重视数学知识,更应突出数学思想方法。教学中应让学生通过仔细阅读,认真审题,通过观察,实验,猜测,验证,推理与交流等对实际问题的信息进行一系列的分析,筛选,区分。找出问题中的数量关系和变化规律,建立相应的数学模型,并利用这些数学模型解决实际问题。有利于提高学生解决数学应用性问题的能力,增强学生应用数学的意识比较全面认识数学与社会,科学和技术的关系,使学生在思维能力,情感,态度和价值观等方面得到进步和发展。
数学模型在教材中很多章节都有体现如建立方程(组)模型,不等式(组)模型,目标函数模型,构造几何图形模型等以下是教学中建立模型求解的案例。
(一)建立方程(组)模型
现实生活中广泛存在着数量之间的相等关系。“方程(组)”模型是研究现实世界数量关系的最基本的数学模型之一。它可以帮组人们从数量关系的角度更准确,清晰的认识。描述和现实世界,如教材中的打折销售,增长率,储蓄利息,工程问题,行程问题,浓度配比问题常可以抽象成“方程(组)”模型来解决。解这类问题关键是找出题中的相等关系列出方程(组)
(二)构建不等式(组)模型来解决问题
在市场经营、生产决策如估计生产数量、核定价格范围,投资决策、盈亏平衡分析,函数最值转化为不等式(组)模型求解
(三)建立目标函数模型
在实际生活中普遍存在方案设计最优化,如用料最省,利润最大、拱桥或喷泉设计,抛掷物体如书本的掷铅球,投篮球等问题建立实际背景建立变量之间的目标函数,如一次函数,二次函数等。利用求函数变量的最大值的问题,函数的性质求解。
(四)构造几何模型
几何与人类生活和实际需要密切相关,诸如航海、建筑、测量、工程定位、裁剪方案、道路拱桥设计,方案设计,美化设计等涉及图形的性质时,常需要建立几何模型,把实际问题转化为几何问题,进而运用数学知识求解。
(五)建立三角函数模型解决实际问题
这类题目大多材料新颖,贴近生活,要求学生能从实际的问题抽象出直角三角形模型,或通过添加辅助线构造直角三角形,然后利用解直角三角形的知识进行求解。
(六)、建立统计模型
统计知识在现实生活中有着广泛的应用,作为学生要学会深刻理解基本统计思想,要善于提出问题,考虑抽样,收集数据,分析数据,做出决策,并能进行有效的交流、评价与改进。
(七)其它模型
以上在初中教学中根据实际问题,已知信息寻找已知和所求之间的联系,通过分析、联想、归纳,将实际问题转化为方程(组)、不等式(组)、函数、几何或三角、统计等相应数学问题,构建数学模型,是解决应用题关键是重点,也是难点。因此,要加强通过对实际问题分析,数学知识,与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题知识,从而提高学生创新知识和实践能力。
数学建模能力的培养不在于某堂课或某几堂课,而应贯穿于学生的整个学习过程,并激发学生的潜能,使他们能在学习数学的过程中自觉地去寻找解决问题的一般方法,真正提高数学能力与学习数学的能力。数学应用与数学建模,其目的不是为了扩充学的课外知识,也不是为解决几个具体问题进行操作,而是要通过教师培养学生的意识,教会学生方法,让学生自己去探索、研究、创新,从而提高学生解决问题的能力,让数学进入生活,让生活走进数学。
参考文献:
[1]全日制《数学课程标准》实验稿
[2]叶其孝主编《中学数学建模》湖南教育出版社。1998
【关键词】数学建模;应用数学;结合
前言:
应用数学不单单指数学的的公式含义,其在实际的生活问题解决中也有着较强的实践性,而数学建模是通过计算的结果来解决实际的问题,然后根据实际的结果对其进行检验,最后来建立一个数学模型。应用数学与数学建模的相互结合,能够更加有效的解决社会中的现实问题,对经济的发展起到了推动的作用。
一、应用数学的价值和现状
数学这门学科的来源就是通过人们对生活中各种规律进行总结和分析,所整理出的一种学术形式,在这种情况下我们可以看出,数学来自生活,所以人们可以利用数学来解决现实中的各种问题,应用数学的最大价值就体现在这个地方,另外,应用数学的价值还体现在这样几个方面:首先是应用数学能够利用各种现实数学问题,来使人们掌握并且灵活使用这些数学知识,使之形成数学思维模式,拥有自主学习和思考方式;其次,通过对应用数学的学习可以帮助人们提高自身的学习能力,而且这种学习能力不仅仅体现在对数学的学习上,还体现在其它学科的学习当中;最后,通过对应用数学中各种实际问题的学习和分析当中,能够使人们更快的进行学习的状态,加强对知识的掌握。
应用数学的价值体现在这样几个方面,但是目前,这样的价值只是在学习方面得以体现,而应用数学的主要内涵是人们对于实际问题的解决能力和实践能力,需要人们在实际问题中分析得出数学数据,然后加以解决,目前,应用数学的发展现状如下:应用数学的特点体现在“应用”上,这就说明在对应用数学进行学习的过程中,要注意实践,另外,通过对应用数学的学习所形成的思维模式,可以帮助人们从多个方面对问题进行分析,目前,应用数学不仅仅在教育行业中进行发展,其应用的范围也在渐渐扩大,其中包括金融、人文和经济等各个方面,展现出极大的作用,在这种应用价值的体现中,使得人们迫切的需要展现应用数学的更多功能和价值,在人们的不断研究当中,应用数学和数学建模的相互结合能够满足人们在生活中的需求,这就使应用数学与数学建模的相互结合成为应用数学的发展趋势。
二、数学建模和应用数学的结合
为了体现出应用数学的功能和应用价值,需要将数学建模和应用数学相互结合,具体的结合策略体现在以下几个方面:
1.发挥数学建模的功能。数学建模是将数学中复杂的理论和公式等抽象的内容,应用到实际生活中的关键桥梁,在数学建模的应用当中,是通过将实际的问题进行分析,建立相应的模型,将其中的数据进行导出,然后利用应用数学中的相应解决方法,通过所建立的数学模型,来对实际问题进行解决。在建立数学模型的过程中,需要注意的是,要对这些实际问题进行全面的分析,保证其中数据的准确性和可靠性,并且对数据的影响因素和其中的变量进行确定,这样才能对问题中各个数据中之间的规律进行分析,保证利用应用数学所解决的问题的结果与实际结果相差不大。
2.在数学的教学课程中应用数学建模。目前,在数学的教学课程中,教师通过教材中的数学公式的使用方法进行讲解,使学生能够理解其含义,并且掌握这些数学知识,为了能够使学生能够灵活的应用数学知识来解决实际问题,教师可以在教学的过程中引入数学建模思想,以实际的问题为例,建立相应的数学建模,使学生利用相应的数学知识,通过建立的数学模型来解决问题。在实际的操作过程中,教师应该对问题的背景进行介绍,以学生为主体,来引导学生导出数学建模中的数据,分析问题中各个因素之间的规律,从而使学生能够更加深入的了解应用数学的知识内容,同时也加强了学生的实践能力,给学生解决实际问题提供了经验,促进应用数学和数学建模充分结合。
3.通过相应的比赛来推动数学建模和应用数学的结合。为了加强学生们的动手实践能力,发挥应用数学的价值,推动数学建模和应用数学的发展趋势,可以借助相应的数学建模比赛,来达到这些目的。在这些比赛的过程中,可以使学生根据实际问题,独立的建立相应的数学建模,应用自己所学习的数学内容,来对此数学建模中的各个数据进行分析,然后得出相应的结论。在此数学建模比赛结束之后,教师应该对每个人所计算得出的结果与实际的结果进行比较和评价,并且对其中的要点进行分析,使学生能够更加深入的了解数学建模与应用数学之间的关系,从而更好的促进数学建模与应用数学的相互结合。
结束语:
应用数学由于本身的价值和特点,使其本身具有较强的应用性和实践性,而数学建模与应用数学的相互结合,可以使人们更好的理解应用数学其中的内涵,并且利用应用数学解决各种实际问题,我们可以通过发挥数学建模的作用、在应用数学教学中引进数学建模和借助数学建模比赛,来促进数学建模和应用数学的结合,保证应用数学的快速发展。
参考文献:
关键词:数学建模;Matlab;插值
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2016)21-0262-02
一、引言
数学建模运用数学的思想方法、数学的语言去近似刻画一个实际研究对象,构建一座沟通现实世界与数学世界的桥梁,并以计算机为工具,应用现代计算技术,达到解决各种实际问题的目的。Matlab是一种应用于科学计算领域的高级语言,其产生是与数学计算紧密联系在一起的,主要功能包括数值计算、符号计算、绘图、编程以及应用工具箱。近年来,随着实际问题的数据规模越来越大,Matlab在数学建模中占据越来越重要的地位。
本文对Matlab在数学建模课中的应用进行讨论分析,阐述了数学建模这门学科的特点及数学建模教学中存在的问题。在数学建模课中突出基本知识的实际应用,需要针对不同问题的计算要求灵活使用Matlab编程。
二、数学建模的特点及教学中的问题
数学建模是一个实践性很强的学科具有以下特点:
(一)涉及广泛的应用领域
在涉及广泛的应用领域,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等。完全不同的实际问题,在一定的简化假设下,它们的模型是相同或近似的。这就要求学生培养广泛的兴趣,拓宽知识面,从而发展联想力,通过对各种问题的分析、研究和比较,逐步达到触类旁通的境界。
(二)需要灵活运用各种数学知识
在数学建模过程中,数学始终是一种工具。要根据实际问题的需要,灵活运用各种数学知识如微分方程、运筹学、概率统计、数值分析、图论、层次分析、变分法等,去描述和解决实际问题。这就要求学生既要加深数学知识的学习,更要培养应用已学到的数学方法及思想进行综合应用和分析,并进行合理地抽象和简化的能力。
(三)技术手段的配合
需要各种技术手段的配合,如查阅文献资料、使用计算机和各种数学软件如Matlab、lingo等。
(四)建立一个数学模型与求解一道数学题目差别极大
求解数学题目往往有唯一正确的答案,但数学建模没有唯一正确的答案。对同一个实际问题可能建立若干个不同的模型,模型无所谓对与错,评价模型优劣的标准是实践。
(五)建立的数学模型与建模的目的有密切关系
对同一个实际对象,建模目的的不同导致建模的侧重点和出发点不同。因此,对一个世界问题,数学建模没有确定的模式,它与问题的性质、建模的目的、建模者自身的数学素质有关,甚至还与建模者的灵性有关,经验、想象力、洞察力、判断及直觉、灵感在建模过程中起着与数学知识同样重要的作用。
数学建模是一门科学,一门艺术,要成为一名出色的艺术家,需要大量的观摩和前辈的指导,最重要的是要亲身的实践。同样要掌握数学建模这门艺术,既要学习、分析、评价、改进前人做过的模型,更要亲自动手做一些实际题目。
几年的“数学建模”教学实践告诉我们,大学生参加数学建模活动,不但要求学生必须了解现代数学各门学科知识和各种数学方法,把所掌握的数学工具创造性地应用于具体的实际问题,构建其数学结构,还要求学生熟悉Matlab、lingo等数学软件,熟练地把现代计算机技术应用于解决当前实际问题,最后还要具有把自己的实践过程和结果叙述成文字的写作能力。目前,数学建模教学中的主要问题是两个“脱节”,一是实际问题与理论知识脱节,二是理论教学与数学软件的应用脱节。结合Matlab进行数学建模教学能够有效地解决理论教学与应用数学软件的脱节。
三、结合Matlab进行数学建模教学
数学建模竞赛能否取得好成绩不仅取决于模型的精妙与合理,还取决于模型的求解。Matlab在模型的求解方面占有关键的地位[1]。因此,结合Matlab进行数学建模教学将起到事半功倍的效果。下面以讲解插值方法为例,说明Matlab在数学建模教学中的重要性和必要性。
在插值方法教学中,首先需要讲解插值法的定义,然后简单讲解拉格朗日插值、分段线性插值和样条插值,最后重点讲解Matlab插值工具箱及其应用。在Matlab插值工具箱中,插值函数分为一维插值函数和二维插值函数两类。Matlab中一维插值函数是interp1[2],语法为:y=interp1(x0,y0,x,'method')。其中:method指定插值的方法,默认为分段线性插值,其值可为nearest、linear、spline和cubic。所有的插值方法要求x0是单调的。
例1:(机床加工)待加工零件的外形根据工艺要求由一组数据(x,y)给出(在平面情况下),用程控铣床加工时每一刀只能沿x方向和y方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的(x,y)坐标。给出的(x,y)数据(程序中的x0,y0)位于机翼断面的下轮廓线上,假设需要得到x坐标每改变0.1时的y坐标。试完成加工所需数据,画出曲线。
解:编写程序如下:
x0=[035791112131415];y0=[01.21.72.02.12.01.81.21.01.6];x=0:0.1:15;y1=interp1(x0,y0,x,'nearest');y2=interp1(x0,y0,x,'linear');y3=interp1(x0,y0,x,'spline');plot(x0,y0,'*',x,y1,'r',x,y2,'b',x,y3);
通过运行结果可以看出,三次样条插值的结果最好,建议选用三次样条插值的结果。
Matlab中二维插值函数之一是interp2,语法为:z=interp2(x0,y0,z0,x,y,'method')。其中:x0,y0分别为m维和n维向量,表示节点;z0为n×m矩阵,表示节点值;x,y为一维数组,表示插值点。
例2:(地貌图形的绘制)下表所列为某次地貌测量所得的结果,对一方形区域(x,y方向均为从1-10),选测某些地点测量其相对于某水平面高度的数据,要求用这些数据(程序中的h)尽量准确地绘制出该地区的地形。
解:此题的关键是将未测量地点的高度用插值方法求出来。程序如下:
[x,y]=meshgrid(1:10);
h=[00.02-0.120-2.090-0.58-0.0800;0.0200-2.380-4.96000-0.1;00.110-3.040-0.5300.10;0003.52000000;-0.43-1.980000.7702.1700;00-2.2900.6902.5900.30;-0.09-0.310004.27000-0.01;0005.137.401.8900.40;0.100.58001.750-0.1100;0-0.01000.300000.01];[xi,yi]=meshgrid(1:0.15:10);
hi=interp2(x,y,h,xi,yi,'spline');surf(xi,yi,hi);
通过运行结果可以看出,利用样条插值得到的数据绘制出了效果较好的地貌形态图。
在数学建模的插值法教学中,重点不是讲解插值法的理论,而是讲解插值法的应用,即如何应用插值法解决实际问题。在这个教学过程中MATLAB占有重要的地位。因为MATLAB能够利用其内部插值函数及有限的数据产生所需的足够的数据,并能够绘制出相应的图形。关键是这一过程的实现MATLAB比其他软件容易得多。[3]有了MATLAB的帮助,数学建模的教学不会像以前那样将重点放在理论讲解上,从而使得大学生有更大的兴趣学习数学建模,并利用学到的知识探索解决实际问题。
四、结论
结合MATLAB进行数学建模教学,能够大大提高学生学习数学建模的积极性,能够有效地解决理论教学与应用数学软件的脱节,能够大大提高教学质量和教学效果。因此,结合MATLAB进行数学建模教学是重要的,也是必要的。
参考文献:
[1]温一新,王涛.数学实验和数学建模教学中数学软件应用的实例分析[J].大学数学,2014,30(5):26-30.
由于对学生建模能力的建立需要长时间的渗透培养,不是短时间就可以完成的。因此,在平时的教学活动中,教师应该注重对学生建模思想的渗透,培养学生的建模意识,让学生在学习的过程中不断提高建模能力,形成数学应用意识。在讲课之前,教师应该认真研读课本,明确可以贯彻数学建模思想的章节,例如几何图形模型(在解测量、航海等应用性的问题时教师需要构建几何模型,将问题转变成几何问题或者三角函数之后再求解)、不等式模型(方案设计等问题)、函数模型(成本及利润的最大化最小化问题)等,在教学过程渗透数学建模教学,培养学生的数学应用意识[1]。与此同时,教师应该以课本为教学出发点,并与实际生活结合,设计一些与生活相关的数学建模,在数学知识讲解中提供生活实例,让学生以数学的思维思考生活实际问题,培养学生的数学应用意识。例如教师可以给学生提出以下问题::上图是两套符合规定的课桌椅子的高度表格,如果当前有一把高为42cm的椅子和一张高为78.2的课桌,请问该桌子和椅子是否配套?学生在做这种题的时候就可以与函数知识相结合。因为学生的思维广度有限,所以很难把数学知识和实际问题结合起来。为了防止学生无法理解题目导致难以建构模型的事情发生,教师应该以学生的日常生活为出发点,不断增强学生建模的熟练程度,从而提高学生的建模能力。
二、注重教学过程,提高学生的建模能力
由于知识的形成和发展过程中就有数学建模思想的存在,所以在《基础模块》中,这一教材以运算意义切入加以思考为侧重点展开教学,同时,教材中十分注重教学与生活实际的联系,引导学生从数学角度发现问题,运用所学知识解决实际问题,提高学生的数学应用意识。对学院学生来说,学习数学建模是为了提高应用意识,所以教师应该注重教学的过程,让学生将所学的知识加以应用,而不是忽视数学建模的讲解,只侧重建模结果的讲解[2]。例如以下这道题。某校为了美化校园环境,组织了65名学生搬花盆。其中,男生每个人一次可以搬8个花盆,女生每个人一次可以搬6个花盆。男女生各搬4次,一共搬了1800个花盆。请求出学生中一共有多少男生。首先,教师应该引导学生读题,让学生抓住题中的有用信息,避免学生受到多余信息的干扰,以求构建出正确等量关系。接下来的步骤是设元。因题中男女生的人数未知,所以可设有x名男生,有(65-x)名女生。已知男女生各搬了4次,总共搬了1800个花盆,据此构建方程模型,列出方程对此求解,通过代数式来体现出在等量关系中存在的基本关系,解出方程。在最后应该对建模环节进行反思。在题目做完后,教师应该鼓励学生思考该题是够具备典型性。从题目的环境来看,此处并不属于常规应用题的分类,之后从构建等量关系来看,该题通过总数相等于各部分之和进行的求解过程。因此,学生一旦把握题目的数学模型,题目无论如何变化,都可以转化为熟悉的模型解决,这能够提高学生的建模能力以及培养数学应用意识。
三、增强教学的活动性,增强学生的数学应用意识
数学建模以及应用题教学的主要目的都是让学生具有数学应用意识,让学生在实际问题的解决过程中拓宽知识面,在解决实际问题时整体素质能力得到全面提高。因此在学院的数学教学过程中,教师应该发挥学生的主体地位和自身的引导地位,让学生积极主动地参与到学习活动中,提高教学效率,使数学建模教学具有活动性。例如下面这种供水类型问题。某市有一个300吨容量的水塔,该水塔每天从5时到17时止向全市供应生活生产用水。该市生活用水为每小时10吨,工业用水量w(吨)与时间t(小时)的关系为w=100h。该市水塔的进水量一共有10级,在第一级时每小时会进水10吨,之后每提高一级,每小时的进水量就会增加10吨。如果某天水塔中原有100吨水,该市在供水的同时打开了进水管。⑴设该水塔用了第n级供水,请写出在t时水塔中水的存有量。⑵当选择第几级进水量时,既能保证水塔中水即不会空也不会溢出?在做这道题时,教师可以鼓励学生建立小组探讨,让学生先自行建立模型运算,之后由教师验证结果。通过这样的教学方式,活动性建模教学既能够锻炼学生的动手能力,还可以培养学生的数学应用意识。
一、小学数学模型思想
在整数的运算中,学生掌握的整数四项基本单向运算的方法是小学接触的数学模型,十进制是表示数的基本模型,是日常生活中使用最多的计数方法。一年级学生接触的“凑十法”与“破十法”就是以其为基础“一看(看大数)、二拆(拆小数)、三凑十、四连加”的思考过程,实际上就是学生在教师指导下建立的较为复杂的数学模型。因此,在小学生的数学教学过程中,不可避免地要用到数学建模思想。
二、开展数学建模活动的途径
数学建模活动的开展是为了培养学生的思维能力以及创新能力,因此,在小学数学教学中要革新思想,用数学建模的思想去进行数学教学。开展数学建模活动需要老师和学生的共同努力,老师要加强对数学建模的重视,在教学过程中渗透建模思想,学生要积极配合老师,团结合作共同完成建模过程。
数学建模的过程离不开资料的收集,因此,教师可以结合教材创造数学情境,让学生在学习的过程中获得“搜集资料、建立模型、解答问题”的体验。例如,西师版教材中三年级上的第九章的总复习――数学文化:中国的四大发明之一――指南针,四面八方,平年、闰年的来历,可以通过让学生收集资料,并解答相应的问题,通过合作、收集资料、解答的过程体验数学建模。
上好实践活动课程对学生模仿建模有很好的指引作用,老师在教学过程中给学生提供信息资料,引导学生进行问题分析以及资料的收集,提高学生的思维能力。结合教材内容,对教学内容进行整合,并融入生活中。例如,西师版教材中实践活动――做一个家庭年历,结合生活实际,同时在要求学生理解年、月、日概念的情况下,考虑当下的问题背景:今年是什么年份,有几月,一月有几天,并对年历进行设计规划,是一个很好的建模过程。
改编教学习题,使数学建模成为一种自觉行为。例如,在西师版小学数学中关于圆柱体和正方体体积的计算中,通过建立数学关系,探讨圆柱与正方体的关系,在体积相同时,圆柱的底面半径、周长、高与长方体的长宽高的联系(圆柱的底面半径等于长方体的高,底面周长等于长方体的长,圆柱的高等于长方体的宽),进而解决练习题中关于圆柱和长方体体积的转变计算。
三、数学建模思想在小学数学教学中的应用
摘要:数学建模是一种利用数学思想解决实际问题的方法,通过抽象、简化建立数学模型,能近似刻画并解决”实际问题的一种强有力的数学思想和教学手段。
关键词:数学建模;建模思想;数学教学
数学建模把现实生活中的问题加以提炼、简单,抽象成数学模型,并对该模型进行探究、归纳,利用所学数学知识、思想、方法验证它的合理性、再用该模型来解释或解决相应的数学问题的过程。
在数学教学(或解题过程)中引入数学建模思想,适当开展数学建模的活动,对学生的能力培养起着重要作用,也是数学教学改革推进素质教育的一个切入点。数学建模为我们提供了将数学与生活实际相联系的机会,提供了理论联系实际的平台,数学建模的过程,就是将数学理论知识应用于实际问题的过程。
一、数学建模思想的提出
随着素质教育不断深入,数学建模理念不断深化,提高数学建模教学势在必行。数学建模能力的培养,既能使学生可以从熟悉的问题情境中引入数学问题,拉近数学与实际生活的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识。
二、数学教学中应用数学建模思想的实际意义
(1)激发学生学习数学的兴趣
在教学过程中,设置问题情境,引导学生主动分析探究问题,鼓励学生积极展开讨论,培养学生主动探究实际问题的能力,能够从具体的实际问题中抽象出数学问题,建立数学模型,达到应用数学知识解决实际问题的功效。
(2)培养学生的应用意识和创新意识
通过数学建模教学,既可以培养学生的数学应用意识、巩固学生的数学方法,又可以培养学生的创新意识以及分析和解决实际问题的能力。
(3)数学建模教学改善了教和学的方式
数学建模使教学过程由以教为主转变为以学为主,突出学生大胆提出各种突破常规,超越习惯的想法和质疑,充分肯定学生的正确的、独特的见解,重视了学生的创新成果。
(4)重视课本知识的功能
数学建模应结合正常的教学内容逐步渗透,把培养学生的应用意识落实到平时的数学过程中,逐步提高学生的建模能力,达到如何由思想转化为具体步骤”,而不是单纯地教步骤,教操作。
(5)加强数学建模思想在实际问题中的应用
要让学生学会建模,就必须从一些学生比较熟悉的实际问题出发,让他们有获得成功的机会,享受成功的喜悦,从而培养学生发现问题,转化问题的能力,逐步培养他们的建模能力。
三、数学建模思想应用的方式:
1、以教材为载体,重视基本方法和基本解题思想的渗透。
数学建模为培养学生的应用意识,提高学生分析问题解决问题的能力,教学中首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。
2、根据所学知识,引导学生将实际应用问题进行分类,建立数学模型,向学生渗透建模思想
为了增强学生的建模能力,在应用问题的教学中,及时结合所学章节内容,引导学生将实际应用问题进行分类使学生掌握熟悉的数学模型,发挥定势思维”的积极作用,可顺利解决数学建模的困难。这样,学生遇到应用问题时,针对问题情景,就可以通过类比寻找记忆中与题目相类似的数学模型,利用数学建模思想,建立数学模型。
3、突破传统教学模式,实行开放式教学向学生渗透建模思想
传统的课堂教学模式通常是教师提供素材,学生被动地参与学习与讨论,学生真正碰到实际问题,往往仍感到无从下手。因此要培养学生建模能力,需要突破传统教学模式。
四、数学建模能力的培养:
数学建模应结合平常的教学内容切入,把培养学生的应用意识落实到教学过程中,使学生真正掌握数学建模的方法,培养学生的数学建模能力。
1、以课本知识为基础,培养数学建模能力
数学建模能力的培养是一个渐进的过程。因此,从七年级开始,应有意识地逐步渗透建模思想。课本每章开始都配有反映实际问题的插图,抽象出各章主要的数学模型,一般也是由实际问题出发抽象出来的,反映了数学建模思想。
2、以课堂教学为平台,培养数学建模能力
在课堂教学中想培养数学建模能力不是简单把实际问题引入,而应根据所学数学知识与实际问题的联系,在教学中适时地进行培养。
3、以生活性问题为基点,培养数学建模能力
大量与日常生活相联系的数学问题,大都可以通过建立数学模型加以解决。只要结合数学课程内容,适时引导学生考虑生活中的数学,会加深对数学知识的理解和运用,恰当地将其融入课堂教学活动中,会增强数学应用的信心,获得必要的应用技能。
4、以实践活动为媒介,培养数学建模能力
在平时的教学中,应加强实际问题的教学,使学生从自身的生活背景中发现数学、创造数学、运用数学,培养建模应用能力。
5、以相关学科为链接,培养数学建模能力
上一篇:元旦联欢会开场主持词(16篇)
下一篇:海外储能市场分析范例(3篇)
热门推荐