高分子与材料工程就业方向(6篇)
时间:2024-03-17
时间:2024-03-17
1+1=2,这一点地球人都知道,但我要说,在材料领域,一加一可能会等于三甚至无穷,当两种或两种以上的材料一旦进行复合,就会产生新的材料,这种新的材料在性能上能够避免合成它的材料的缺点,同时也兼具它们的优点,在当今,人们无休止地开采利用有限的自然资源,因此复合材料的研发就理所当然地成为材料发展的新趋势之一。
复合材料与工程专业所要解决的就是了解复合材料的发展历程、组成特点、主要应用领域、复合原理、主要制备工艺、复合材料的研究热点与最新进展等问题,在此基础上培养同学们的创新精神以及把所学的理论应用到实践过程中的能力,从而解决资源短缺的问题,术业有专攻”,复合材料与工程分为复合材料设计与加工和复合材料工程两个专业方向,这样可以使同学们在成为本专业通才的同时又是某个方向的专才。
本专业毕业生可成为航空航天等高科技领域的工程师,各类体育用品、汽车、建筑、工业用品等涉及复合材料制造企业的设计师与工程师,高分子合成与加工、化工等相关企业的生产研发、营销人员,相关科研院所的研发人员等,总之,本专业就业面比较广,就业前景一片看好,此外,本专业毕业生的薪酬也不会很低,刚
转贴于
刚毕业一年你的月薪就有望达到3000元,即使算上地域、单位等因素,平均薪酬基本上也能在2000~4000元/月。
专业课程
高等数学、材料复合原理、复合材料学、复合材料工艺设备、材料学概论、复合材料的实验技术、离分子化学、高分子物理等。
就业方向
本专业毕业生主要到国防、航天航空、汽车、化工、能源等复合材料与工程的相关领域从事相关工作。
推荐院校
重点大学:哈尔滨工业大学、华东理工大学、武汉理工大学等。
关键词:材料物理;人才培养;课程设置
中图分类号:G640文献标志码:A文章编号:1674-9324(2012)07-0058-02
一、材料物理专业简介
材料物理专业各高校定义不一,纵观各大高校的描述,认为南京邮电大学[1]描述比较全面:材料物理专业培养掌握材料科学的基础理论与技术,掌握现代材料科学研究方法,掌握材料性能与各层次微观结构之间关系的基本规律,能从事各种材料应用基础理论研究,传统材料的性能改进与新型材料开发与研制,材料的合理使用和材料的检测分析等工作的高级专门人才。能在材料科学与工程和相关交叉学科领域从事科研、教学、产品研发、生产技术或管理工作的具有理科素质及工科意识的理工复合型专门人才。本专业毕业生应具有以下几方面的能力和素质:具备宽厚的数学和物理基础,较好的计算机和电子科学技术基础,人文社会科学基础和外语综合能力;系统掌握物理和材料物理基础理论,基本实验方法和技能;本专业学生继续深造的方向有材料学、材料物理与化学、材料加工工程、微电子学与固体电子学、凝聚态物理、物理电子学、光学和半导体物理学等。本专业学生毕业后可以在材料、能源、电子、信息等诸多领域和交叉学科从事教学、科研、开发、设计和管理工作。主要研究方向有:固体微结构分析与信息功能材料,位移式相变与形状记忆和超弹性材料,复合功能材料与智能结构,生物医学材料及应用以及界面化学与功能陶瓷等。
二、材料物理人才培养的瓶颈
材料物理专业,一般属于理学院或者材料工程学院下辖的专业之一,所涉及到的方面主要是材料的宏观及微观结构,尤其是微观结构,材料的物理性能基本参数以及这些参数的物理本质。毕业生可能面临的另外一个问题是,由于很多高校建立材料专业的背景不同,兼之材料科学作为专业名称提出来,又不是很长时间的事情,造成很多用人单位不了解这个专业的毕业生究竟是做什么的。这也是导致这几年材料物理专业越来越多的毕业生毕业后待业的一个重要的原因。众多的因素阻碍着材料物理学生的发展,但是最主要的还是学生的专业课程设置,不同的教学安排会培养出完全不同的学生,最终的结果也会大不相同。
三、材料物理人才培养的趋势
材料物理专业是材料科学不可或缺的重要组成部分。犹如支撑万丈高楼的基石,材料支撑着人类文明。虽然材料物理专业目前遇到了很多的问题,但是幸运的是这些问题被教育者意识到了,现在很多学者都在探讨材料物理专业以后的培养模式和方向。随着科学技术的发展,材料正朝着微型化、功能化、智能化的方向发展。这也就意味着材料行业将迎来一次大的变革,相应的材料产物也会随着变化。现在颇为流行的纳米材料、环境材料、电子材料、信息材料,大部分都是材料的物理性能在各个领域的应用。社会对人才的要求是各大高校培养学生的一个重要依据,虽然各个学校有自己的特色,但是面对瞬息万变的局势,各大高校还是打破框架,寻求发展。很多学校与时俱进,将材料学的重心由传统材料开始偏向于新型材料,如:纳米材料、复合材料、环保材料、电子材料等。从目前来看,在短时间内,各大高校的培养趋势将会继续朝着微型化、功能化、智能化材料方向发展,未来也会随着科学技术的发展,跟上前沿科技,不断更新培养计划,培养出21世纪综合型的人才。
四、武汉科技大学材料物理专业简介
武汉科技大学理学院材料物理专业开办于2001年,是一门材料学与物理学相交叉的学科,迄今已有6届毕业生,材料物理专业在探索中发展。武汉科技大学材料物理专业培养适应现代化建设需要,具有远大理想和良好思想品德,具有较深厚的数学和物理学基础,掌握材料科学基本理论和现代材料科学研究与测试的基本方法,能在科学研究、科技服务、教育、工业、事业、社会服务等方面从事材料及其相关领域的研究设计、性能检测、技术开发、质量管理等方面工作的应用型高级专门人才。然而随着经济的快速发展,工程教育的扩大,材料类专业教育进行了改革。武汉科技大学材料物理专业自2004年以来,也对教学进行了初步调整,但特色仍不明显。2008年金融危机以来,大学生就业问题越来越严重,材料物理专业的发展也因此面临着新的挑战,对未来科学和教育趋势面临着新的思考。武汉科技大学材料物理专业就业率有降低趋势,加入钢铁相关企业的毕业生也逐年减少,选择考研的同学占大多数。
五、材料物理专业课程设置的特点
通过对国内多所名校的调研,给出了以下结论:名校的课程都由基础课、专业课、必修课、选修课和实践课组成。名校的课程设置都是紧密结合本校的特色,充分依托学校这个平台,使专业的发展平台更加宽广同时有底气。名校在设置课程的时候也会均衡各个学期学生的学习任务,学生的接受程度,尽量做到循序渐进,由浅入深,由易到难。所有的高校都步伐统一的把专业课放在了第五、第六和第七学期。但是调查表明学生并不希望太晚上专业课,特别是第七学期,大家都希望可以提前一些时间上专业课,使专业课上课时间同学生考研和找工作的时间分开。武汉科技大学材料物理专业的主要课程有普通物理、理论物理、固体物理、数学物理方法、物理化学、材料物理导论、材料科学基础、材料研究方法、材料合成与制备、普通物理实验、近代物理实验、材料物理专业实验等。我校材料物理由于成立得比较晚,所以成立的时候大量的借鉴了其他高校的课程安排。虽然这样的借鉴可以帮助我们少走弯路,但是过多的借鉴使我校的材料物理专业缺乏特色。我校的材料物理专业的基础课就是一些最基本的知识,我有人有,人有我无。不过有一点也是值得欣慰的,就是我们的物理基础比较牢靠。我们的专业选修课虽然很多,但是不受重视,安排的时间太晚。我们的专业课比较少,而且都是些入门的基础知识,实用性不强。实验很多,但是创新实验比较少,都是些传统的实验,且在考核方式上要进行合理的改善。实践课程安排得很好,这是我校的亮点。总体来说,我校的材料物理专业的课程偏理论,应用型的课很少,课程间的交叉太多,这样造成我们的课程多而杂,缺乏特色,就业口径窄。换句话说,我校的材料物理专业的整体设计显得太过中规中矩,这样的设置不会出错,但是也缺少特色,缺乏亮点,所以我们的课程设置有必要进行一些改进。如何更好更有效地改进材料物理专业课程的设置将是我们下一步重点研究和讨论的课题。
参考文献:
[1]南京邮电大学.材料科学与工程学院专业介绍[EB/OL].http:///s/73/t/164/a/7915/info.jspy,2010-01-01.
[2]石敏,陈翌庆,许育东,等.论材料物理专业教学的改革[J].中国科教创新导刊,2009,(19):73-74.
[3]刘强春,袁广宇,戴建明.材料物理专业实验课程体系的改革与实践[J].牡丹江师范学院学报,2010,70(1):65-66.
关键词:高职本科实践教学对策研究
中图分类号:G71文献标识码:A文章编号:1672-3791(2013)01(c)-0183-02
高分子材料作为一种可以成型各种形状并且性能优良的新型化工材料,广泛应用于工业、国防、生物、信息、能源、环境等各方面。作为不可或缺的高分子材料行业,在高速发展的同时经济效益也有了很大的提高。高分子材料专业教育需要适应新的要求,培养具有创新能力,综合素质高,社会需求适应性强的不同层次的研究技术人员。
1高职本科高分子材料工程专业实践教学的重要性
青岛大学对口高职本科高分子材料专业人才培养目标是培养具有高分子材料与工程等方面的理论基础知识与应用能力,具有较强的创新精神和实践能力,能综合应用专业知识分析解决实际问题,从事高分子材料的合成、改性和加工成型等领域内的技术开发、技术应用、工艺和设备的设计,生产及管理、产品市场与营销等方面工作的高级专门人才。
本专业在教学计划中,除专业理论之外,加大实践性教学环节,增大专业实训比例,重视专业技术技能培养,考核中增加了专业技术技能鉴定项目的测试。实践性教学环节的学时约占四年教学计划的四分之一左右(如图1)。
实践性教学一方面是为了使学生获取感性知识、巩固和深化课堂理性知识的学习;另一方面是为了训练学生运用所学的基本理论、基本知识和基本技能,培养分析和解决实际工程问题的能力,使学生掌握进行科学研究与工程技术实践的基本技能,以完成工程师的基本训练。
2当前实践教学存在的主要问题
近几年发展应用型本科教育、培养本科层次的应用型人才成为许多高等院校的办学定位和培养目标。应用型本科教育的规模日趋扩大,应用型本科院校在专业设置上依旧追求门类齐全,向综合性院校过渡的趋势十分明显,导致办学特色不突出,适应社会需求能力差。
根据有关部门对毕业生质量调查材料表明,近几年理工科学校培养的毕业生,他们的基础知识比较扎实,专业知识也能够适应工作需要,但实际工作能力较弱。毕业生并没有完全掌握相应的技能,实际能力的培养不能满足社会的实际需求。虽然绝大多数毕业生都能找到工作,但就业层级和岗位质量不够理想。
3加强实践教学采取的相应对策
3.1从办学理念上重视实践教学
高职本科教育的一个显著的特点是学生不仅要完成课堂上理论知识的学习,还必须完成实践性教学环节的学习。高职本科学生的学习要充分体现理论与实践相结合;专业知识学习与技能能力培养相结合;教师指导作用与学生独立学习相结合;基础理论学习与实践环节学习相结合。
实践性教学主要增强专业适应性,要求学生对所学专业的技术操作、实际动手能力与实际生产状况相适应,然而现有的单一讲课模式不利于全面提高学生的综合素质,教育与经济、科技相脱节,为了使学生学有所用,更好地适应社会,必须加强实践性教学,使“产、学、研”有机地结合起来,走“产学研”一体化的教学模式。
3.2以市场需求为基准制定教学内容
将教学内容与市场需求挂钩,市场需求什么样的人才,我们就培养什么样的学生。现在,企业急需既懂专业理论知识,又懂技术操作的复合型人才,而我们在教学改革中就以此为主要内容制定了几个具有突破性、创新性的教学模式。
对于大学的教学计划,市场早有微词:学生毕业时,学到的知识已过时了,为了改变这一现状,我们在制定教学内容时,在各地开展调研,结合市场需求。如:模具、设备方向的人才在未来几年会急需。在授课时,老师就会将内容向这个方向倾斜,使学生在未毕业时就已经成为“抢手货”。
3.2.1定点、定向为企业培养技术人员
山东是高分子原料及制品生产大户。散落在县以下的各小企业为谋求发展,已意识到培养自己的技术员对企业发展有多重要。近几年,我们一直与毕业生保持密切往来,解决他们在生产中发现的问题。在企业中建立良好的口碑。已与几家企业协商,为他们单独办班,定点、定向培养人才,受到企业好评。同时,我们也积累了丰富的生产经验。
3.2.2挂靠实习基地现场教学
我们教育学生,实习基地是你们接触的第一份“工作”。所以,在教学中我们经常会把教学现场搬到工厂或实验室。让学生真正“干”起来。从而学到熟练操作。
3.2.3“产学研”结合,鼓励学生自主创业
在学生进行毕业设计时,我们会安排一些有创新能力的学生参与到科研开发的项目中来。把他们带到专业领域的前沿,使他们在毕业后具备自主创业的能力,从而打破学生只能“找”工作的境况。使学生的毕业前景扩宽。
3.2.4选定与《高分子材料与工程专业》密切相关的企业急待解决的课题作为研究专题,统一规划、整合《高分子材料与助剂》《塑料配方设计》《塑料成型设备》、《塑料加工成型工艺》《高分子性能测试》的实验教学内容,合理安排实验时间,做到每一个专题实验都要有明确、合理、全面的设计思想。以精选的研究专题为载体,把相关的实验知识、实验技术和实验方法有机地串连起来,实现创造条件使学生较早参加科研和创新活动的目标。
3.3重视和加强实践教学基地建设
在实践教学方面,要逐渐形成以服务为宗旨、以就业为导向的教学理念,以文化课为基础、以专业课为主体、以实验实习为重点、以岗位合格为目标的教学原则,先后建立校内实习实训基地2处、校外实习实训基地5处(青岛润兴塑料厂、青岛铭昶模塑公司、青岛宏达塑料集团、青岛联创集团和青岛黄海轮胎集团),保证学生每学期在校外实习基地实习2~3周。在校内外实习过程中,通过让学生在企业顶岗培训,使理论与实践相互渗透,逐步实现与工作岗位的接轨。
借助开放的校内实习实训基地,通过“嵌入式”“专业教学现场化,实验教学课题化”的教学模式,使理论教学与实践教学达到完美的结合,学生的基础知识、专业知识、操作技能和综合素质都得到了很大的提高,历届高职毕业生在《塑料注塑工》中、高级技能达级考核中,合格率均达100%。为学生就业及走向社会打下了良好的基础。逐步形成“宽专业、多技能、双证书”的办学特色。
在现有5个校外实习实训基地、1个校内实训室的基础上,增加到6~8个校外实习实训基地,3个校内实训室。与3~5个企业达成校企共建协议。
3.4增大实践教学经费的投入
近三年来我专业投入大量经费,主要用于购买实验设备及实验药品,优化教学设备,多媒体教室改造,为学生创造良好的学习和实习条件。这三年来我们购入的大型设备有双螺杆挤出机2台,塑料注塑机2台,切粒机1台,烘箱2台,万能拉力机1台,冲击试验机2台,熔融指数测量仪1台,高分辨电子显微镜3台等,极大地改善了学生的实验环境,为培养具有较高动手能力的专业技术性人才奠定了良好的基础。
3.5进行职业职能资格证书考核,适应社会人才市场的要求
职业资格证书是由国家劳动和社会保障部颁发的职业能力证明,谁持有的证书多,谁的就业选择性就大,就业的机会就多。
我专业从2004年秋季在本市抢先申办了青岛市劳动局《高分子材料加工工艺》中、高级技能达级考点,并于本年底与市劳动局合作,成功举办了我系2002级高分子材料与工程专业学生的技能达级考试,学生达级率100%,受到了青岛市劳动局的初步肯定。我们从2002级至2009级高分子材料应用技术专业开始进行职业资格证书认证,至今已经进行了八届。
4结语
我们以创新能力培养为主线,构建了高职本科高分子材料与工程专业实践教学平台,高职本科高分子材料应用技术专业实践教学环节改革与创新,使高分子材料加工成型专业的学生经过四年在校的严格学习及实习、实训,具有复合型职业技能结构,较强的专业技术应用能力和技术开发能力,实践动手能力强,毕业前获高分子成型工艺中级或高级技能证书。毕业后能直接在生产第一线从事管理、技术应用与技术开发工作。
参考文献
[1]代显华,李忠民.高素质应用型人才培养实践教学的问题与对策——以成都大学为例[J].成都大学学报:教育科学版,2009,23(1):8-10.
[2]刘传影,赵则信.应用型本科教育实践教学初探[J].黑龙江生态工程职业学院学报,2011,24(6):74-75.
[3]马群锋.我国高职类高分子专业发展现状的研究[J].化工高等教育,2011(1):13-23.
[4]陈厚,曲荣君,王春华,等.浅谈高分子材料与工程专业实践教学平台的构建[J].广州化工,2010,38(11):220-243.
[5]王慧敏,郑耀臣,崔孟忠,等.高分子材料与工程专业实验教学的改革与实践[J].化工高等教育,2007,97(5):39-41.
南北高校各有优势
2011年,北京科技大学、北京航空航天大学、大连理工大学、苏州大学和南京理工大学五所高校开始招收纳米材料与技术专业本科生。五所大学中,北京科技大学、北京航空航天大学和大连理工大学三所北方高校在材料科学上属传统名校,而南方院校苏州大学和南京理工大学把纳米材料成果产业化,形成了自己的特点。
北方三所高校算是材料科学与工程领域传统名校,值得注意的是,它们却均未设置专门的纳米材料研究机构,更多的是依托原有的强势学科,在传统材料研究领域引入纳米科技,寻求突破。
北京科技大学
北京科技大学原名北京钢铁学院,曾被誉为“钢铁摇篮”,其材料科学研究侧重点是金属材料。除了材料学院这个重点学院外,从事材料科学研究的还有新金属国家重点实验室、高效轧制国家工程研究中心、国家材料服役安全科学中心等机构,侧重点也不局限于金属材料,在无机非金属、高分子、生物医药材料等方面亦有建树。
目前,北科大纳米材料课题组主要研究纳米材料制备与表征、纳米材料改性、功能纳米材料等方面。此外,亦有部分老师研究纳米加工、纳米组装、纳米器件等应用方向。
北京航空航天大学
与北科大不同,北航材料学院在北航不属于重点学院,规模较小,师资力量仅百来人,这决定了北航材料学院的研究方向不会太广。作为航天航空院校,北航材料学院也有自己的优势,正在筹建的航空科学与技术国家实验室(航空领域最高级别实验室),它的侧重点在金属材料、树脂基复合材料及失效分析、先进结构材料、新型功能材料等方面。
在纳米材料上,北航材料学院重点关注纳米器件和纳米涂层。材料学院的纳米材料研究发展趋势可能是纳米技术在航天航空领域的应用。
大连理工大学
大连理工大学的材料学院在金属材料、材料加工方面实力强,基于大连的地理位置,材料学院还开设了五年制金属材料工程日语强化班。不过,纳米材料与技术专业并非隶属于材料能源学部,而是化工与环境学部。因而,大连理工大学的纳米材料研究偏化工类,包括纳米粒子合成化学技术、无机纳米功能材料、纳米复合材料等方向。纳米材料与技术专业开设的专业课中,亦有化工原理、基础化学、材料化学等化工类课程。可以说,这是大连理工大学纳米材料与技术专业的一大特色。
与北方三所高校相比,苏州大学和南京理工大学纳米材料与技术专业的发展方向截然不同。两所南方高校均成立多个纳米材料研发机构,在研究方向上,两所高校侧重于纳米材料器件应用,尝试产业化。这些特点可能与江浙一带出现纳米高新技术企业有关。
苏州大学
苏州大学没有材料科学与工程学院,而是材料与化工学部,研究偏向化工,在无机非金属、高分子材料方面实力不错。纳米材料与技术专业并没有开设在材料与化工学部,而是2010年成立的纳米科学技术学院。除了纳米科学技术学院,苏州大学研究纳米材料的机构还有2008年成立的苏州大学功能纳米与软物质研究院、2011年成立的苏州大学-滑铁卢大学苏州纳米科技研究院。其中,以中科院院士李述汤教授领衔组建的功能纳米与软物质研究院已初具规模,它以功能纳米材料和软物质为研究对象,侧重于功能纳米材料与器件、有机光电材料与器件、纳米生物医学技术等,寻求在纳米器件以及新能源、环保、医用等领域的应用。
南京理工大学
南京理工大学由军工学院演变发展而来,其材料科学与工程学院的材料学研究侧重于金属材料及复合材料。不过,南理工是国内最早开展纳米材料与技术研究的大学之一,正筹建纳米结构研究中心,研究侧重点是与纳米结构材料相关的分析、材料力学、电化学性能评估等。由南理工化工系和南京部分企业共同支持的南京市高聚物纳米复合材料工程技术中心,研究侧重点是纳米材料制备、应用、纳米催化聚合反应、纳米复合材料,该中心已与江苏部分纳米企业开展纳米技术产业化合作。此外,南理工还共建了金属纳米材料与技术联合实验室。
其他高校纳米特色
上海交通大学
上海交通大学材料科学与工程学院在各类相关排名中居首,教职工200多人,研究侧重点包括金属材料、复合材料、塑性成形、轻合金精密成型等,在中国是材料科学与工程学子公认的梦想学府。其材料学院也涉及纳米材料,比如,复合材料研究所部分老师从事纳米复合材料研究,微电子材料与技术研究所从事纳米电子材料研究。此外,上海交通大学还成立了微纳科学技术研究院,研究方向为纳米生物医学、纳米电子学与器件。生物医药工程学院也开展纳米材料的可控合成与制备、纳米生物材料等方面的研究。
清华大学
与北京航空航天大学相似,清华大学材料科学与工程系是学校名气大于院系实力,每年有数百人争夺材料系不足30个研究生名额。材料系建有新型陶瓷与精细工艺国家重点实验室,研究侧重点以陶瓷材料为主,同时涉及磁性材料、复合材料、电极材料和核材料。在纳米材料方面,清华材料系主要研究纳米材料结构、纳米材料合成和微纳米颗粒等。2010年,清华大学成立了微纳米力学与多学科交叉创新研究中心,主要研究微纳米器件、纳米复合材料在电能存储上应用和微纳米设备研发等。
北京大学
北大材料科学与工程系成立于2005年,教职工10余人,成立之初就把材料科学与纳米技术结合起来,欲在纳米材料与微纳器件方面有所突破。此外,北大成立了纳米化学研究中心,教职工7人直博生却达45人,主要研究领域包括低维新材料与纳米器件、纳米领域的基本物理化学问题。
西北工业大学
西工大是西部材料科学与工程实力最强的院校,其材料学院师资队伍近200人,有凝固技术国家重点实验室和超高温复合材料国防科技重点实验室。因此,其研究侧重点在凝固,复合材料和金属材料的实力亦不俗。在纳米材料方面,西工大成立了微/纳米系统研究中心,致力于航空航天微系统技术、微纳器件设计制造技术、微纳功能结构技术。总之,西工大的纳米材料研究可能集中于纳米器件在航天、航空、航海方面的应用。
留学两大国
纳米技术是交叉学科,包括纳米科技、物理、化学、数学、分子生物学等课程。报考纳米专业或方向的研究生在本科一般学的是材料学、材料物理与化学、凝聚态物理、物理化学等。就留学而言,由于纳米材料处于基础研究阶段,容易;各个国家在纳米材料方面投入大量资金,使得科研经费相对充足,相比于其他专业容易申请奖学金。这两点决定了留学攻读纳米技术专业研究生相对容易。
2000年,美国白宫国家纳米技术计划,美国的纳米技术得到飞速发展。总体上看,美国的纳米技术已经处在纳米技术实用化阶段,而其他各国仍处在纳米技术的基础研究阶段。美国各大高校也争相进入纳米材料各个研究领域——
实力强劲的麻省理工学院在太阳能存储、航空材料、燃料电池薄膜、封装材料耐磨织物和生物医疗设备领域的碳纳米管、聚合纳米复合材料等方面成果显著。
加州大学伯克利分校注重于纳米材料在能源、药物、环境等方面的应用,已卓有成效。
哈佛大学则侧重在生物纳米科技,即生物学、工程学与纳米科学的交叉领域。
康奈尔大学已经在纳米级电子机械设备、碳纳米管应用电池、纳米纤维等方面获得突破。
斯坦福大学重在纳米晶的光学性能、输运性能和生物应用,以及纳米传感器、纳米图形技术等。
普渡大学的纳米电子学、纳米光子学、计算纳米技术,尤其是计算纳米技术全球领先。
纽约州立大学奥尔巴尼分校专注于纳米工程、纳米生物科学,其纳米技术研究中心是全球该领域最先进的研究机构。
莱斯大学在纳米碳材料领域成果显著,在学校的研究人员中,纳米材料研究人员的比重约为四分之一,是美国纳米材料研究人员最多的大学之一。
此外,美国有很多研究纳米技术的实验室,它们比较愿意招中国大学生,这一点也值得注意。
日本算是最早开展纳米技术基础及应用研究的国家,早在1981年,日本政府就建立了纳米技术扶持计划。美国公布国家纳米技术计划前,曾派人去日本做调查。日本纳米技术的研发特点是企业界是主力军,它们试图将纳米技术融入到产业中。比如,日本企业纷纷斥巨资建纳米技术研究机构,同时建立纳米材料分厂实现产业化。此外,企业与大学、科研院所合作,开发纳米技术。比如,富士通和德国慕尼黑大学合作,三菱公司和日本京都大学合作。
与美国在纳米技术基础研究和生物工程技术领域领先不同,日本在精细元器件及材料的制造方面独占鳌头,日本对纳米材料研究的投入不断加大,也使得去日本读纳米专业是一个不错的选择。
Tips:何去何从
纳米材料专业毕业生有三大去处。选择留学深造或进高校、研究院从事研发;进入纳米材料行业企业;进入传统材料企业。
摘要:文章以安徽农业大学为例,分析高等农林院校新建材料科学与工程专业的特色,即在于以农林生物质材料为主要教研对象,因具有循环再生及环境友好等特征,成为21世纪热点发展领域,在时代需求、发展方向与专业依托等方面富有特色,并结合其专业创建过程中的师资队伍建设、专业性教材建设、实践教学与创新创业等问题,提出采取夯实学科基础、加大人才引进力度、加强专业基础建设、优化实践教学体系、开展创新创业教学等措施,提高学生的综合素质和能力,以实现人才培养目标。
关键词:高等农林院校;材料科学与工程;特色;路径
中图分类号:G642.3文献标识码:A文章编号:1002-4107(2017)05-0030-03
材料是国民经济建设的物质基础。材料科学是21世纪的支柱学科和技术先导,是众多学科发展的坚强后盾,材料在某些领域已成为制约我国关键技术的瓶颈。随着经济快速发展和国际竞争的加剧,高新材料的地位日益凸显,社会对材料科学与工程专业技术人才的需求越来越高。
材料科学与工程专业是一门主要涉及物理、化学、计算科学、工程学和材料学的综合叉学科,其内涵极为丰富,涵盖金属材料、冶金、无机非金属材料、高分子材料、材料物理和材料化学等二级学科,是研究材料的组成与结构、合成与制备、性质及使用性能、测试与表征等四个基本要素及其相互关系与制约规律的一门科学[1-2]。
目前,我国大部分院校开设有材料类及其相关专业,根据院校自身发展特点,大致分为两种类型:一类存在于理工院校,与冶金、机械、金属、非金属和高分子材料交叉融合,侧重于从实际应用领域来探求新材料的制备、性能评价与使用;另一类存在于综合性大学,由物理学和化学孕育并分化形成材料物理与材料化学,侧重于基础研究方向[3-4]。由此可见,基于不同起点和研究重点,这两类材料学科研究方向在发展中自我完善又相互靠近,形成了基础研究与应用研究逐步融合发展的方向。
一、新建材料科学与工程专业的特色
(一)时代需求方面
随着时代的发展,材料科学与工程研究方向正从传统领域向新型生物质功能材料拓展,农林生物质材料主要以木本、禾本和藤本植物及其加工剩余物和废弃物为原材料,通过物理、化学和生物等高科技手段,加工成性能优异、环境友好、附加值高的新型材料[5]。2010年教育部明确提出要大力发展互联网、绿色经济、低碳经济、环保技术、生物医药等关系到未来环境和人类生活的重要战略性新兴产业,要加大战略性新兴产业人才培养力度,支持和鼓励有条件的高等学校申报与战略性新兴产业相关的专业,其中新材料产业中的新型生物质功能材料就是优先申报的领域[6]。目前,高等农林院校每年向社会输送此类人才最多400人,远远不能满足国家未来战略性新兴产业发展对人才之需求,在此背景下,安徽农业大学成功申报了材料科学与工程专业。
(二)发展方向
所谓专业特色是指学校根据所具备的优势条件,经过长期的办学实践逐步积淀形成,具有优于其他学校的、独特的、稳定的、鲜明的个性特点并为社会所承认的专业风格[7]。高等农林类院校在农业和林业等方面积累了深厚的研究基础。
随着我国经济的快速发展,能源等资源供给存在巨大缺口,已成为可持续发展的瓶颈。目前,世界上每年主要以石油为原料生产约1.57亿吨的高分子聚合物,同时产生8000多万吨的塑料废弃物,从理论上讲,聚烯烃塑料在环境中自然降解需要200年甚至100万年的时间,大量的废弃塑料积累在环境中,给环境修复带来了巨大的压力和破坏,而且石化资源是有限的。可再生、可循环利用、无污染的植物资源在自然界中储量丰富,发展潜力大,加快生物质资源的培育、研究和利用,发展农林生物质材料产业,对缓解资源与环境压力意义重大,符合可持续发展和循环经济的理念,将成为不可逆转的历史潮流[8]。我国生物质资源品种及产量位居世界前列,年均生产量约21亿吨,其中仅农业秸秆年产量就达7亿吨,目前只有约5000万吨得到初级利用,发展潜力很大[9-10]。农林生物质材料作为材料科学与工程专业的研究对象,其发展前景具有不可替代的优势,专业性人才的培养势必能够推动生物质材料研究的步伐,满足社会对人才的需求。
(三)专业依托
全国大约有7所高等农林院校在木材科学与工程本科专业基础上,以新型生物质功能材料为方向新建材料科学与工程专业,借助木材科学与工程专业的传统优势,短期内提升材料科学与工程专业发展的水平和质量。安徽农业大学是一所具有80多年办学历史、学术积淀深厚的省属重点高等农林院校,长期以来,与林业生物质材料相关的林业工程、农业工程、纺织工程等学科得到了飞速发展,在木材功能材料、纤维功能、农作物秸秆改性材料等方面已取得了一系列的研究成果,具有较好的学术积淀和较强的师资队伍。安徽农业大学以木材科学与工程实验室、林产化学与工程实验室、高分子材料与工程实验室、纺织材料实验室等为基础,整合现有资源,进行优化组合,创建了材料科学与工程专业,培养生物质材料与工程专业人才,满足了国家和安徽省新型战略产业发展之需要。
二、新建材料科学与工程专业面临的挑战
新建材料科学与工程专业面临的机遇与挑战并存。如何抓住机遇迎接挑战,需要认真剖析建设过程中的诸多“障碍”,才能将挑战转化成机遇。
(一)师资队伍建设
新专业师资队伍存在的问题主要集中在教师资源少,专业教师年轻化,教学科研成果缺乏积淀上,因此如何在短期内建立起职称结构、学历层次、年g梯度合理的师资队伍,是新专业建设亟待解决的关键问题。
(二)专业教材建设
以生物质材料为发展方向的高等农林院校新建材料专业,由于办学时间短,针对生物质材料的系列教材缺乏,目前选择的或是理工院校,或是综合大学同类专业的教材,或是农林院校相近专业的教材,因此针对性、系统性不强,生物质材料特色不明显,教师和学生都不甚满意。
(三)实践教学
实践教学作为人才能力培养的核心,在“双创型”、“复合型”人才培养过程中起到十分重要的作用。新专业在建立之初,通常存在实验室建设不完善,实习基地建设不规范,实习点较少,创新实践活动缺乏新颖性等问题。如何建立“网络化”、“系统化”的实践教学模式是创新型人才培养的关键。
(四)创新创业教育
大学生就业形势严峻,缓解就业压力的一条重要途径是走创新创业之路,学校有责任培养他们的创新创业意识和能力。我们都知道要o学生一杯水,教师得有一桶水的道理,因此,创新创业教育的质量和效果,首先取决于学校及教师自身创新创业的水平,这就为学校和教师提出了新的更高要求。显然,对于新建专业,教师的精力更多尚在适应课堂教学的努力中,自身创业经验缺乏,教师和学生创新创业水平亟待同步提升。
三、新建材料科学与工程专业的发展路径
在新建材料科学与工程专业的过程中,为了弥补发展中的不足,解决发展瓶颈,提升专业发展层次,针对材料科学与工程专业知识特点,进行教学体系改革,调整专业知识结构,变革教学方式,不断优化专业基础建设,解决建设过程中出现的问题。
(一)夯实学科基础,拓宽专业口径
农林院校材料专业虽然以农林生物质材料为主要方向和特色,但课程的设置要充分考虑材料学科的共性基础,考虑多学科的交叉融合,使得培养的学生既有学科特色,又有广泛的社会适应性,如安徽农业大学开设了理论力学、材料力学、高分子化学与物理、物理化学、高分子材料学、生物质资源材料学、复合材料学、材料装备学和胶合材料学等基础课程,学生毕业后的就业或深造可在高分子材料、以植物资源为基础的生物质材料及复合材料等领域,为学生今后的发展奠定坚实的基础和宽广的空间。
(二)加大人才引进力度,建设结构合理的教师队伍
师资队伍的水平是办学质量的根本。新建专业的教师紧缺,是亟待解决的最重要的工作之一。虽然有校内传统相关专业部分教师能够承担新专业的教学,但仅仅是一种应急措施,教师知识构成的局限性、师资整体结构的系统性,都远不能满足新专业建设和发展的需求,因此师资队伍的建设刻不容缓,必须要加大人才引进的力度,采用灵活多变的政策广纳人才,包括从师资队伍充沛的老牌兄弟院校、科研院所等,通过人才合理流动,实现教师资源的优化配置。同时要加强对新进青年教师的培养,激励他们参与国际、国内访学交流和社会实践,促进师资队伍快速成长。如安徽农业大学在人事引进制度上采用“一人一议”政策,最近从国外著名大学引进1位材料专业的30岁博士后,并破格聘他为教授。
(三)加强基础条件建设,全面服务新专业的发展
在新专业建设之初,教材、实验室、实习基地等基础条件都很不足,对这些基础条件必须同步建设,才能在短期内适应新专业教学所需。
1.教材建设。教材是学生课堂前后预习和温故知新的物质条件,必须跟进,但新建专业教材的配套性总是不尽如人意,虽然现在教材版本繁多,表面上选择余地很大,但不可否认,粗制滥造现象也不罕见,因此对现有教材的选取必须高度重视,要充分发扬民主精神,集思广益,将真正优秀的、适合的教材甄别出来。同时加强教材编写力度,对尚不成熟的脚本,先作为讲义印发给学生,经过一届学生的试用,在修改完善后正式出版,逐步建立起一套针对性强的教材体系。
2.实验室建设。实验室建设是新专业建设中资金投入最大的部分,涉及实验用房的建设、实验仪器设备的购置及实验教师的培养等诸多方面,牵涉面广,需要学校多部门的磋商协调。往往基础课实验条件建设容易实现,因为基础课实验内容的刚性强,建设思想易统一;而专业课实验室建设弹性大,投入多,易受到挤压或拖延,但专业课实验室恰恰是体现专业特征的地方,是学生创新训练的主要场所,也是教师科研的主要依托,因此在实验室建设中,对建设目标的充分论证、建设过程的细致规划,是专业实验室建设得到学校理解支持的关键。如安徽农业大学在材料科学与工程新专业实验设备购置方面,近三年投入300多万元。
3.实习基地建设。实践教学离不开实习基地,离不开相关行业的企事业单位。让这些企事业单位乐于接收学生的实习,必须从实习安全、产学研合作、人才输送与就业等多方面为企业着想。学院动员所有领导和教师主动出击、多方联系,在诚信的基础上,解除企业对学生实习的顾虑。如安徽农业大学在竹材的基础研究方面具有较多成果,积极探讨竹材深加工的应用方向,因此与安徽龙华竹业有限公司达成了合作共识,建立了良好的校企合作实践教学基地。
(四)优化实践教学体系,提升学生的实践能力
实践教学是确保学生理论联系实际、学以致用的重要环节,这也是工科专业的一个重要特征,材料科学与工程专业更是如此[9-11]。如安徽农业大学为了学生将来更快地适应工作需要,成为社会需要的精英人才,在专业课设置中几乎都有配套实验,根据教学内容,加强理论与实践的结合,为了突出实验教学的全过程化,通过开设综合性、设计性实验,进一步提高学生的创新能力。
(五)开展创新创业教学,提升学生的创新能力
校内的创新创业教育需要鼓励和氛围,通过宣传大学生创业先进典型,培养学生创新创业的意识、信心和勇气;通过创新创业讲座和科研活动,形成以项目和社团为组织的“创新创业教育”实践群体,如安徽农业大学每年开展“创客”大赛,每个班级组成若干团队参赛,让学生在参赛过程中得到锻炼和提高。另外每年都有部级、省级和学校创新基金项目,鼓励二年级以上的学生组团申报,到大四时,基本上每位学生都是创新基金项目的参与者。
此外,创新创业需要走出校园、走进社会,从专业的角度去发现问题、需求和不足,寻找专业的创新点,进而发现创业的切入点,提升创业的竞争力。要求学生走进社会,首先教师要密切与社会的联系,如安徽农业大学对新建专业给予一定经费上的投入,支持教师通过参加学术会议、加入行业协会等途径,开拓社会资源,为学生搭建创新创业训练的桥梁和平台。
四、结语
材料科学与工程专业已呈现出与多学科相互渗透、交叉综合的发展趋势,以生物质资源为材料主体是高等农林院校材料科学与工程专业的特色,顺应了当今社会经济对高素质人才需求。它在新建过程中出现了一系列的问题,这些问题要在实践中予以解决,最终目的是为了办好新专业,引领新专业走入正轨,迈向一个较高的发展平台。因此,我们要探索出一条适合我国国情的、具有国际化与工程背景、富有创新创业精神和实践能力的高素质材料类人才培养的路子,提高我国材料工业水平并使之具有可持续发展能力,使我国尽快从一个材料大国走向材料强国。
参考文献:
[1]何宇声.复合材料在材料科学技术中的作用和地位――迎接二十一世纪挑战[J].玻璃钢/复合材料,2001,(1).
[2]杨振华,彭万里.地方综合性大学材料科学与工程专业教学改革与实践[J].企业家天地,2013,(4).
[3]杜双明,王晓刚.材料科学与工程概论[M].西安:西安电子科技大学出版社,2011:1-3.
[4]赵东,王洋,洪翔飞等.农林院校材料科学与工程专业建设路径及规律探析――基于问卷调查结果和AHP分析[J].中国农业教育,2015,(4).
[5]鲍甫成.发展生物质材料与生物质材料科学[J].林产工业,2008,(4).
[6]陈礼辉.充分利用可再生资源、大力发展生物质材料[J].中华纸业,2009,(24).
[7]董先明,倪春林,禹筱元等.农林院校材料类专业实验教学平台的建设初探[J].实验室科学,2013,(4).
[8]杨文斌,宋剑斌,陈寒娴等.材料科学与工程专业培养模式探讨[J].中国校外教育,2013,(9).
[9]刘伟东,石萍,齐锦刚等.材料科学与工程专业实验教学体系建设与实施[J].辽宁工业大学学报:社会科学版,2014,(5).
[10]陈一伲张雪辉,朱志云.材料科学工程专业教学工程专业教学改革研究[J].中国电力教育,2011,(19).
[11]罗丙红,周长忍.浅谈材料科学与工程特色专业的建设思路[J].广东化工,2011,(3).
收稿日期:2016-08-29
1.1授课内容强调基础性高分子材料与机械类学生通常接触到的金属材料在结构、性能、制备工艺等方面有很大的区别。向机械类学生讲授高分子材料,主要目的是让他们对高分子材料有最基本的了解。在短短4学时内,不可能也没必要将高分子材料相关的全部内容压缩讲授。这就决定了机械工程材料课程中高分子材料部分必须侧重于基础性知识,对于理论性、专业性太强的知识点必须舍弃。基础性内容应当包括高分子材料的基本概念、分类、结构特点及常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能。
1.2授课目标偏向工程性高分子材料不仅可作为结构材料使用,也可以作为功能材料使用。对于非材料类专业的学生,特别是机械类专业的学生,更关心材料的力学性能和应用范围。因此,在课程内容的安排上,应以与机械工程有关的机械性能为主,给出常用工程高分子材料的基本力学性能指标及适用领域。
1.3授课过程重视学生的先修知识大多数高校的机械工程材料课程以金属材料为主线,在学习高分子材料之前,学生对金属材料已经有基本了解。高分子材料与金属材料之间存在较大差异,例如:高分子材料的聚集态结构以非晶结构为主,而金属材料则以晶体结构为主;许多高分子材料,特别是橡胶类的高分子材料具有金属材料所不具备的优良弹性等。学生先修知识的习惯思维在他们学习高分子材料时可能会引起冲突,因此在授课时必须对金属材料与高分子材料的差异予以考虑。采用与金属材料对比的方法学习高分子材料,有利于帮助学生澄清概念,更好地掌握高分子材料的知识。
1.4教学方式应具有高效性高分子材料课程涉及的概念繁多,容易混淆,对于机械类学生而言比较抽象,难以理解。在短短的4学时内,要想让学生尽可能多的掌握高分子材料的相关基本概念,必须摒弃照本宣科或一味讲授的教学方式。通过高效的教学方式,充分调动学生的积极性、主动性,引导学生思考,方能达到理想的教学效果。
1.5提供扩展知识的参考书由于高分子材料的性能、结构、制备工艺以及表征与金属材料和陶瓷材料完全不同,而且目前在机械工程材料中高分子材料部分比例很少。为解决这一矛盾,在章节后面列出了比较系统的高分子材料性能、内容、结构、制备工艺以及表征方面的书籍,以供学生参考。
2高分子材料教学改革
根据以上原则,我们在2013年度的授课过程中对高分子材料的讲授进行了调整,具体如下:(1)授课内容及学时安排:高分子材料的基本概念(高分子、单体、链节,0.5学时),高分子材料的分类方法(按用途分类,按热行为分类,按反应类型分类,按主链结构分类,0.5学时),高分子材料基本结构(简单介绍近程结构、远程结构、聚集态结构的概念,0.5学时)及物理状态(玻璃态、高弹态和粘流态,0.5学时),典型工程塑料的力学性能和应用(1学时),典型合成橡胶的力学性能和应用(1学时)。(2)重点讲授常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能及典型工程高分子材料的适用领域。(3)授课过程中通过列表等方式将高分子材料的相关内容与金属材料进行对比,一方面避免概念混淆,另一方面突出高分子材料与金属材料的不同之处。(4)采用启发式教学模式,通过设问、模拟实验、举例、探究等方法引导学生思考;在多媒体课件中,采用丰富的图片、动画激发学生学习的积极性和主动性。
3结束语
上一篇:我的同学初三作文字(6篇)
下一篇:五年级语文教研组计划(整理3篇)
热门推荐