纳米技术的前景范例(12篇)

时间:2024-03-28

纳米技术的前景范文篇1

【关键词】纳米生物材料纳米技术肿瘤诊断肿瘤治疗

1纳米生物材料和技术在肿瘤诊断中的应用

1.1纳米生物材料和技术可用来进行前哨淋巴结成像,从而判断有无转移乳腺癌、黑色素瘤或胃肠癌的患者,通常会在手术前进行前哨淋巴结活检,以确定癌症是否转移。纳米颗粒制剂可通过不同的成像技术发现转移灶,例如Kobayashi等在研究中发现,标记了MRI造影剂钆的树突状聚合物可以提供一种出色的影像,显示充满转移癌细胞的淋巴结。

1.2纳米生物材料和技术可用于肿瘤的早期检测

1.2.1纳米颗粒纳米材料通过双功能螯合剂或物理包埋的方法将同位素与纳米材料连接,再将可与病变组织特异结合的靶向分子连接到纳米材料上。纳米颗粒作为影像的对比剂,一方面靶向肿瘤显像,另一方面还可携带药物[1]。

1.2.2悬臂梁纳米装置悬臂梁一端被瞄定,能被操纵来与特定分子结合,而这种特定分子代表与癌有关的某些改变。当这些分子结合到悬臂梁上,表面张力会发生改变,导致悬臂梁弯曲。通过检测其弯曲,科学家们能够判断是否存在与癌有关的一些分子。

1.2.3纳米孔经过改进的基因码阅读方法可以帮助研究者检测到可能引发癌症的基因错误。纳米孔一次只允许DNA穿过一条链,科学家能够检测链上每个碱基的形状和电特性,使DNA测序效率更高,从而来获取编码信息,包括与癌有关的编码错误。

1.2.4纳米管纳米管是大小约为一个DNA分子直径一半的碳棒,它不仅能检测改变基因的出现,还能帮助研究者查明那些改变的准确位置。

1.2.5量子点半导体量子点纳米级的光辐射颗粒,具有独特的光学及电子特点,其亮度高而稳定,并可发出不同的荧光颜色,量子点与肿瘤抗原连接后形成影像,从而对肿瘤进行诊断。

1.2.6纳米生物传感器纳米生物传感器通过靶向分子与肿瘤细胞表面标志物分子结合,利用物理方法来测量传感器中的磁信号、光信号等,可实现肿瘤的定位和显像,有利于肿瘤的早期诊断。

1.2.7纳米机器人用纳米微电子学控制形成纳米机器人,尺寸比人体红细胞还小。将纳米机器人从血管注入人体后,可经血液循环对身体各部位进行检测和诊断[2]。

1.2.8光学相干层析术由清华大学研制,其分辨率可达1个微米级,较CT和核磁共振的精密度高出上千倍,据此可以对疾病进行早发现和早诊断。

2纳米生物材料和技术在肿瘤治疗中的应用

2.1纳米颗粒能提高肿瘤基因治疗的效果针对脑胶质细胞瘤,基因治疗系统中的关键物质是氯毒素和铁氧物纳米微粒。这种靶向基因传递系统提高了基因治疗的疗效。同时有研究表明微小的硅石颗粒能充当DNA载体,提供一种非病毒方法的基因治疗。Deng等用纳米微粒介导的基因转染使肿瘤抑制基因FUS1外源表达,可提高人肺癌细胞(NSCLC细胞)对化疗药物顺铂的敏感性,同时出现MDM2的下调、p53的蓄积以及Apaf-1依赖凋亡通路的活化,使肿瘤抑制作用成倍提高。

2.2纳米颗粒能提高化疗的效果Majoros等将甲氨蝶呤附着于树枝纳米颗粒中,制作成靶向纳米微粒。研究表明靶向药物制剂能提高药物在病灶组织中的蓄积浓度,从而提高药物的疗效,降低药物对其他正常组织的损伤及全身毒副作用。

2.3纳米颗粒能提高肿瘤热疗的效果热疗是通过加热治疗肿瘤,使肿瘤组织温度上升至40-43℃,既使肿瘤缩小,又不损伤正常组织的一种治疗方法[3]。纳米颗粒提高了热疗靶向性和疗效,降低了毒副反应。

2.4生物纳米管治疗癌症由细胞核心部位的部分自身结构制作的纳米管,可作为纳米级胶囊传递基因和药物进入人体。Miguel等将抗癌药物泰素掺入到蛋白质-脂质混合体,可使药物到达癌细胞的同时减少化疗的副作用。

2.5纳米壳能杀死肿瘤细胞纳米壳是外壳涂金的微小珠子,科学家设计这些珠子吸收特定波长的光,纳米壳吸收光能可产生一种强热,纳米壳吸收所产生的热能成功地杀死肿瘤细胞,而邻近细胞却完好无损。

总之,纳米科技正在以迅猛的势头快速发展,而且越来越渗透到各个学科和研究领域。纳米医学技术为基础和临床医学研究提供了重大的创新机遇和巨大的市场前景,同时也带来了风险和挑战。有一些关键的问题有待解决,如纳米药物的药代动力学、生物分布、毒副作用以及安全性等。这些问题的解决需要物理学家、化学家、生物学家及临床医生共同努力来完成。

参考文献

[1]刘金剑,刘鉴峰.纳米材料在核医学中的应用.国际放射医学核医学杂志,2010,34(6):326-329.

纳米技术的前景范文篇2

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代,不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果。接下来深入到纳米线、纳米管和纳米带的研究,出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法,这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术,电化学沉积法制备金属纳米线阵列技术,以及电炉烧结法制造氧化物纳米带技术等等。

3涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池、各向异性结构材料、新型面光源材料等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

4含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

纳米技术的前景范文篇3

20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。

由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。

根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。

近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技术:⑥纳米TiO2产业化成套技术。由于以上条件的制约,使得纳米TiO2的应用和发展受到限制。

我国纳米TiO2的现状

在国外普遍开展了纳米TiO2的制备和应用技术开发,并取得了阶段性成果,我国纳米TiO2的研究在“九五”期间形成了高潮,据了解,进行纳米粉体制备技术研究的科学院所和高校几乎都在进行和进行过纳米TiO2的研究。重庆大学应用化学系是国内最早(1989年)研究纳米TiO2的单位,华东理工大学、中国科学院上海硅酸盐研究所是目前研究技术较全面、报道最多的单位。国内主要研究单位与制备方法见表2。

目前,国内涉足纳米TiO2生产的公司约有十家,总生产能力在1000多吨。四川攀枝花钢铁(集团)公司钢铁研究院年产200t生产装置是我国技术装备较先进、品种最为齐全的装置,可以生产金红石型和锐钛型两大系列各有4个(10~40)nm的粉体品种;由淮北芦岭煤矿和腾岭工贸有限公司共同组建的安徽科纳新材料有限公司年产100t生产基地在宿州市建成;江苏河海纳米科技股份有限公司投资5000万元,已经建成年产500t的规模;青岛科技大学纳米材料重点实验室与海尔集团联合开发的首条具有百吨生产能力的生产线已经建成并一次试车成功;济南裕兴化工总厂拥有先进的纳米TiO2生产线(已通过省级鉴定),具备年产100t生产能力,可提供纳米锐钛型、金红石型的粉体和浆料共4个品种、多种规格的产品;此外,四川永禄科技有限公司、浙江舟山明日纳米有限公司、江苏五菱常泰纳米材料有限公司、河北茂源化工有限公司纳米TiO2装置也已建成。纳米TiO2的发展

1)纳米TiO2生产的特点

纵观国外纳米TiO2的生产,存在着以下特点:生产原料主要为四氯化钛、硫酸氧钛,生产方法主要有气相法和液相法。气相法主要有以四氯化钛为原料的氢氧火焰水解法,而液相法主要是以四氯化钛和硫酸氧钛为原料的化学沉淀法,且多数生产厂家为钛白粉生产厂,充分利用了原有氯化法和硫酸法生产装置的中间产物、生产技术、公用工程和生产管理方面的经验。

我国纳米TiO2的研究和生产具有以下几个特点:①对纳米TiO2的研究多、面广,力量分散,低水平的重复性研究现象严重,企业介入的力度不够;②重点进行了纳米TiO2制备技术的开发,对纳米TiO2的应用技术开发力度较小,尤其是有关应用的关键技术没有突破性进展;③工程开发能力薄弱,因纳米TiO2项目一般投资较小,一些大型的工程公司(设计院)对工程化的兴趣不大,不愿投入人力物力进行工程开发,④生产规模小、基本采用湿法工艺,土法上马,产品质量差,现有市场空间较小,没有给企业带来想象中的高利润。目前,我国纳米TiO2的市场价格大致为(7~42)万元/t,因为晶型、质量和产地不同价格差距较大,国内生产的产品价格为(7~24)万元/t。

2)我国纳米TiO2生产的发展建议

生产工艺的比较

气相法反应速度快,能实现连续化生产,而且制备的纳米TiO2纯度高、分散性好、团聚少、比表面活性大,产品特别适合于精细陶瓷材料、催化剂材料和电子材料。但气相法反应在高温下瞬间完成,要求反应物料在较短的时间内达到微观上的均匀混合,对反应器的形式、设备的材质、加热方式、进料方式均有很高的要求。目前气相法在我国处于小试阶段,欲达到工业化生产,还要解决一系列工程问题和设备材质问题。

与气相法相比,液相法生产的原料成本低了一个数量级。而且具有原料无毒、无危险性、常温液相反应、工艺过程简单易控制、易扩大到工业规模生产、三废污染少、产品质量稳定等优点。因此;液相法中硫酸氧钛和四氯化钛液相中的化学沉淀法最具工业化发展潜力。

原料生产路线

我国钛白工业近十年来发生了很大的变化,取得了令人瞩目的成就,其硫酸法钛白的生产已与国外先进技术差距不多,总生产能力已跃居世界第二位,仅次于美国。

根据纳米TiO2的生产特点,结合国内钛白生产的具体情况,我们提出了以硫酸法生产的中间产物硫酸氧钛为原料的生产路线,充分利用我国在硫酸法钛白工业生产中所取得的技术,以及工程化方面的经验,发展我国的纳米TiO2工业。

生产规模的确定

目前,国内纳米TiO2的需求量一种观点认为应在1万t左右,一种观点认为在1000t以下,我们认为在目前的情况下,后一种观点可能更符合国内的现实。目前国内纳米TiO2的生产能力已经能够满足现有市场的需求,但随着我国纳米产品的普及程度和人们消费观念的改变以及我国整体经济呈现稳步发展的态势,纳米TiO2必将迎来广阔的市场发展空间。因此,新上项目应在(400~500)t/a的生产规模,同时最好建在钛白生产厂内。

生产方法的选择

化学沉淀法一般分为均匀沉淀法、直接沉淀法和共沉淀法三种。其中均匀沉淀法具有工艺简单、产品质量好、易于操作等特点,是最具工业化发展前景的一种制备方法。均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢、均匀地释放出来。该方法中,加入溶液的沉淀剂不立刻与沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生成,使之通过溶液中的化学反应缓慢生成沉淀剂,只要控制好生成沉淀剂的速度,就可避免浓度不均匀现象,使过饱和度控制在适当的范围内,从而控制粒子的生长速度,获得粒度均匀、致密、便于洗涤、纯度高的纳米粒子,常用的均匀沉淀剂为尿素等。以硫酸氧钛为前驱物,以尿素为沉淀剂制备纳米二氧化钛的反应原理为:尿素水溶液在70℃左右开始水解,其反应式为:CO(NH2)2+3H2O=2NH3·H2O+CO2

由于尿素的分解速度受加热温度和尿素浓度的控制,因此可以使尿素分解速度降得很低,从而可得粒径分布均匀和粒径小的纳米TiO2。尿素的分解产物CO2和NH3,在反应或煅烧后均为气体,易挥发,不会对产品的纯度和质量造成影响。生成沉淀剂NH3·H2O在TiOSO4溶液中分布均匀、浓度低,使得沉淀物TiO(OH)2均匀生成:

TiOSO4+2NH3·H2O=TiO(OH)2+(NH4)2SO4

TiO(OH)2煅烧得到TiO2:

TiO(OH)2=TiO2+H2O

存在的问题

纳米技术的前景范文篇4

原理与创新

激光照排制版类似传统胶卷照相的过程,要经过两步的曝光、冲洗等繁琐工艺,并伴随感光废液和冲洗废水的排放。从原理上讲,所有的信息存储都可以转化为二进制的“0”“1”语言方式,即信息记录区和非记录区要有明显差异的物理化学性质。对于印刷制版过程,若从亲油墨或不亲油墨的性质出发,便可以看作就是为了呈现印刷区(亲油墨,“1”)和非印刷区(不亲油墨,“0”)两种相反性质的区域。对于印版来说,就是呈现图文区(亲油)和非图文区(亲水)两种相反性质。这样,问题的关键就在于如何形成亲水、亲油的微区。

中国科学院化学研究所在纳米界面材料制备及超亲水/超疏水浸润性方面开展了一系列有重要影响的基础性研究工作,相关研究成果获得2005年和2008年国家自然科学奖二等奖;基于上述基础并结合印刷制版原理,研发团队突破感光成像的制版思路,创新性地提出了一种非感光的纳米材料绿色打印制版技术;进一步发展出“绿色版基、绿色制版、绿色油墨”的完整绿色产业链技术,系统解决印刷产业的污染问题;并突破传统印刷技术精度的极限,拓展了绿色印刷技术在印刷电路等方面的应用,将绿色印刷发展为众多行业共性的绿色制造技术。

突破与发展

纳米绿色印刷制版技术从材料、设备到软件的开发都是全新的一套技术体系,国内外均没有成熟的技术作为参照,因此从实验室研发、中试试验再到产业化研发都面临诸多方面的挑战。在此过程中,纳米绿色印刷技术得到了来自科技部、北京市及中科院等单位以及联想控股、国科控股等企业的大力支持,受到多位国家领导人的关注和重视,并成立了产业化公司。经过艰苦的技术攻关和工程化研究,纳米绿色印刷技术在产业化研究和示范应用方面取得重大进展:

绿色印刷:突破打印精度和速度难题,开发出高精度绿色制版设备,被行业专家誉为可以与汉字激光照排相提并论的重大技术创新,在40余家报社和印刷企业得到应用;进而突破电解氧化的传统工艺,成功开发变革性的纳米涂层版材,建成国际上第一条无电解氧化版材生产线;并研制出水性环保油墨;研究成果先后获印刷行业十佳创新设备奖、中关村十大创新成果、中国产学研合作创新成果奖、第二届全国印刷行业重点创新成果奖(特别突出成果,全国共两项)等,成功入选2010上海世博会、“十一五”国家重大科技成就展、中关村国家自主创新示范区成就展等重要展区。

印刷电子:突破传统电路蚀刻制造工艺,成功研发出绿色、低成本的纳米绿色印刷电子技术;印制的电子票卡在全国科技活动周、APEC会议等成功应用。采用绿色印刷工艺制造的绿色地铁票通过全部考核并投入使用。进一步发展了其在印刷触摸屏、太阳能电池、生物芯片和物联网等领域的应用。

综上所述,纳米绿色印刷技术以其绿色环保、工艺简捷及低成本等突出优势呈现出广阔的产业变革前景,将从根本上颠覆印刷、电子等产业现有的生产方式,最大限度地解决重要产业的环境污染问题。相信在不久的将来,纳米绿色印刷技术作为一种先进制造技术,将在众多传统产业改造和战略新兴产业发展中发挥重要作用,引领印刷技术新时代,形成纳米材料绿色印刷产业技术集群,迎来印刷行业新的辉煌。

纳米技术的前景范文1篇5

1金属硫化合物纳米材料的合成方法

1.1模板技术

模板技术是指采用具有纳米孔洞的基质材料中的空隙作为模板,进行纳米材料的合成。孔洞的空间分布规律决定了填充于其中的目标材料的空间分布规律。模板可以分为硬模板和软模板两类。

1.1.1硬模板

硬模板是现在广泛应用的、可以严格控制形貌的方法,主要包括多孔氧化铝碳纳米管等。LiYan等报道了用多孔氧化铝模板制备CdS纳米线[2]。对于通过沸石分子筛模板法来控制纳米材料的研究已有很多。把纳米微粒放在笼子里能得到尺寸均匀具有空间周期性构型的纳米材料。Herron等[3]混合Cd(NO3)2溶液与Na-Y型沸石,经过离子交换后形成新的Cd-Y型沸石,干燥后和H2S气体反应,在分子筛八面体沸石笼中合成CdS超微粒子。目前有关新型沸石分子筛孔道内组装纳米客体构筑新型主体客体纳米复合材料研究引起了有关研究者的兴趣[4]。

1.1.2软化学法

软化学法,通常是对一些没有固定组织结构,但是在某一特定空间范围内又具有了限阀能力的有机分子体系加强应用。软化学法技术操作方便、方法简单、成本低,已成为制备、组装微晶的重要手段[5]。它的缺点是不能象硬模板那样严格控制产物的形状和尺寸,软化学控制合成的研究越来越普遍。(1)高分子聚合物法高分子聚合物具有有机预组织和自组合的结构,交联的网状结构提供了微化学反应环境和成长空间,实现了无机材料的形貌、尺寸和取向的可控性。这种基体作为微晶的复合和组装模板也已有广泛的研究[6]。高分子自组装的过程包括有机基团、无机反应物强烈键合,无机物在聚合物中分散、溶解直到在内部有序规则的微环境中诱导成核[7]。高分子对无机反应物的分散和包裹性[8],可形成具有一定尺寸和形貌的微晶直至有序排列[8]。ZhangJ等报道了聚丙烯酞胺分子控制合成CdS纳米线[9]。(2)微乳液法微乳液法是近年逐渐发展起来的用反胶团或W/O型微乳液制备超细颗粒的方法。该方法是由表面活性剂、助表面活性剂、有机溶剂和水溶液4部分组成的宏观上均一而微观上不均匀的、透明的、各向同性的液-液均相热力学稳定体系。反应物浓度、微乳液的组成、表面活性剂等因素都有可能影响微乳液法制备超细颗粒。与其它化学法相比,制备的粒子大小可控,分散性好,不易聚结。孙玉凤等[10]以四元体(十六烷基三甲基溴化铵/水/正辛烷/正丁醇)W/O型徽乳体系为介质,制备了纳米硫化锌粉体,研究了硫化锌粉体光催化降解次甲基蓝的能力。(3)单分子膜法自组装单分子膜技术发展到今天已经非常成熟了[11],单分子膜适合作为纳米团簇的组装模板,因为它的结构排布很规则。其中研究使用最多的是LB膜[12-14]和MD膜[15],现已用来制备排列规则的纳米材料。(4)生物分子模板法常用的模板通常是DNA分子,它的组装是通过模板间的分子与纳米团簇结合的低聚核昔酸分子识别而实现[16],而不是纳米团簇与模板的识别。完善的分子识别功能,使组装过程具有高度的选择性。Braun等[17]采用线状DNA分子为模板制备出直径为100nm的单晶金属纳米线。另一种常用的生物分子模板是蛋白质,Meldrum等[18]用铁蛋白为模板制出了纳米Fe2S3。

1.2水热和溶剂热合成法

1.2.1水热法

水热法是指在密封压力容器的高温高压环境中,以水作为反应介质,制备研究材料的一种方法。低温(温度在25~200℃之间)水热合成反应更加受到人们的青睐,即可得到处于非平衡状态的介稳相物质[19],又可使反应温度较低有利于产品的大规模工业生产。在水热条件下,水既是溶剂,又是矿化的促进剂,同时还是压力传递的媒介物。与其它湿化学方法相比,主要具有以下两方面优越之处:(1)水热法避免了高温处理而可直接得到结晶良好的粉体,工艺简单,不易团聚等。研究表明,制备出的粒子形状规则且粒度分布窄、纯度高、分散性好、晶型好且可控制、生产成本低。(2)产物的形貌、晶相及纯度与水热反应条件有很大的相关性,可以通过改变反应条件来对产物的这些性质进行调控。YuW等[20]首先在铜板上镀锌晶种,然后采用简单的水热法在纳米晶锌层上通过醋酸锌和硫脲反应合成了ZnS纳米阵列。实验表明纳米晶锌不仅是水热反应的晶种,而且作为反应物提供硫离子,具有很高的活性。尤其是水热反应在95℃低温和1h短时间条件下完成的,操作简单方便。而且这样制备出的ZnS纳米棒具有形貌整齐、长径比高等特点,给未来场致发射的应用带来了很大的潜能。水热法合成ZnS的实验中[21],TEM图像显示,表面光滑的ZnS纳米棒直径大约20nm,长径比也较高。由选区电子衍射(SAED)图可以得出,在ZnS纳米棒上聚焦电子束显示出散布的环,证明ZnS纳米棒是多晶的。TEM图像表明六边形的CuS纳米盘有2个主要的方向,一个是在平的基底上,另一个是垂直于基底[22]。

1.2.2溶剂热法

虽然水热法有许多优点,但也有其自身局限性,最明显的就是只能用于氧化物或少数硫化物的制备,这一问题的存在使得非水溶剂反应和溶剂热合成技术应运而生。溶剂热反应是水热反应的发展,它与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。在溶剂热反应中,一种或几种前驱体溶解在非水溶剂中,在液相或超临界条件下,反应物分散在溶液中并且变的比较活泼,反应发生,产物缓慢生成。该过程相对简单而且易于控制,并且在密闭体系中可以有效的防止有毒物质的挥发和制备对空气敏感的前驱体。另外,物相的形成、粒径的大小、形态也能够控制,且产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、黏度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大。相应的,反应物(通常是固体)的溶解、分散及化学反应活性大大的提高或增强,这就使得反应能够在较低的温度下发生。ThongtemT等[23]在水合乙醇和甲酸作为pH稳定剂,并包含了不同分子量不同量聚乙二醇的混合溶剂中,通过CuCl2•2H2O和(NH4)2S200℃热溶液反应成功合成了六边形的CuS。

1.2.3辐射化学合成法

辐射化学合成法是电离辐射使水溶液或其它溶液生成了溶剂化电子,在这样的反应体系中不需要使用还原剂就可还原金属离子,降低其化合价,经成核生长形成产物颗粒[24]。目前主要的辐射源为γ-射线和紫外线。具有可在常温常压条件下,产物粒度大小可控,制备周期短等优点,还避免对环境造成污染。

1.2.4溶胶-凝胶法

溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料,且从合成的初始阶段就可控制在纳米尺度,但由于成本相对较高,在应用上也比较局限。陈平清等[25]采用溶胶-凝胶法成功的在ZnS荧光粉表面包覆TiO2薄膜。ZnS荧光粉表面包覆了一层厚度约5nm的TiO2薄膜,该薄膜整体连续性较好,分布较为均匀,且包覆过程对荧光粉的晶型及结晶度无影响,而包覆膜对ZnS的吸光度略有屏蔽且发光强度也有所降低。

1.2.5化学沉淀法

化学沉淀法属于液相法的一种。向废水中投加某些化学物质,使它和废水中欲去除的污染物发生直接的化学反应,生成难溶于水的沉淀物而使污染物分离除去的方法。缺点是纯度较低,且颗粒粒径较大[26]。ZhouLimei等[27]用硫酸锌、硫脲和氨水通过化学沉积法只改变硫酸锌浓度成功制备了ZnS薄膜。实验表明,氨水在整个过程中对ZnS薄膜的透射性、同质性、结晶等性能起到了非常重要的作用。

1.2.6自组装技术

自组装就是利用分子间的氢键、静电力以及疏水作用等相互作用,组装成有序的纳米结构。利用自组装技术,可以在分子水平上控制粒子的形状、尺寸、取向和结构。自组装技术简便易行,无需特殊装置。MeldrumFC等[28]通过生长单层自组装模板成功制备了PbS和ZnS晶体的图案阵列。

1.2.7电化学技术

电沉积技术越来越成为人们关注的焦点,因为电沉积纳米材料具有以下优点:①多种类纳米晶金属、合金及复合材料都适合用此方法制备;②结晶过程的过电位容易控制,计算机监控,常温常压操作、困难小、工艺灵活,易于实验室向工业现场转变;③电沉积易在大面积和复杂形状的零件上获得较好的外延生长层。因此,利用电沉积[29]技术制备纳米材料有着较好的前景。NaglaaF等[30]用脉冲电沉积的方法,以导电玻璃为基底,在不同浓度比的Na2S2O3和ZnSO4水溶液中,成功制备出了ZnS超薄膜。实验表明金属金和铟对ZnS薄膜有类似欧姆特性。通过进一步PEC图片的观察,还发现退火到300℃,可以明显改善薄膜的光电导性。BicerM等[31]采用电化学方法在阳极氧化铝薄膜微孔中合成了CdS纳米线,具有一致的直径和晶体生长方向。由于晶粒的量子效应,CdS纳米线的光吸收表明有一个明显的蓝色偏移。这种合成CdS纳米线的方法很可能也同样会适用合成其他半导体纳米线,例如PbS、ZnS等。XuXiang等[32]采用模板电沉积法,在包裹LB薄膜的金电池上,成功制备出了整齐的CdS超薄膜。

纳米技术的前景范文篇6

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

[论文关键词]纳米材料应用

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

纳米技术的前景范文篇7

关键词:纳米材料生物医学应用

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的DeMey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]PhilippeP,NangZLetal.Science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

纳米技术的前景范文

关键词:导电高分子纳米复合材料应用

确切来说,聚乙炔具有导电功能的发现是在上个世纪的1977年,距今也才四十五年的时间;而纳米技术融合到导电高分子技术中的发展更短,不到二十年的时间,在这么短的时间里,导电高分子的研究已经取得了飞跃的发展,同时导电高分子材料也被应用在了众多的领域众多的产品中,给我们的生活生产起着重要的作用;从这项技术的发展中可以看出,其应用的背景远不止目前这些。顾名思义,导电高分子中纳米复合材料应该具备有两个特点,一个是纳米功能,另一个是导电性;本文主要探讨导电高分子技术中的纳米复合材料的应用现状,同时对其发展略表看法。

一、导电高分子中纳米复合材料的应用

在导电高分子技术领域中,纳米复合材料的优点非常多。从产品的特点来说,其具有高弹性、高可塑性、低密度、耐腐蚀性、质量轻、柔软和加工性能好等特点,另外其电导率的范围非常宽,具有半导体的特点;从经济层面上来说,这种材料的价格也很便宜。导电高分子材料包括纳米复合材料的经济利用价值非常高,其不仅在我国经济生产中具有重要作用,在进行科学实验中也是意义重大;在这样的时代背景下,其商业价值已经不用明说了。目前,不仅是科学研究机构,就连很多企业都已经开始进行纳米复合材料的研究工作了。具体来说,导电高分子的纳米复合技术和材料的应用包括:

1.在电子元件特别是在晶体管和二极管上的应用

纳米复合技术及其产品在电子器件中的应用非常广泛(其他的导电高分子技术在这方面的应用同样非常广泛),且从目前的形式来说,其应用前景仍然非常大。在上世纪聚乙炔的导电性能被发现后,人们很快就在导电聚合物的基础上研究出了一种可以弯曲并且也非常薄的电子元件,这种电子元件就是发光二级管;发光二级管的出现意义非常重大,其象征着导电高分子向着实用化迈出了第一步。另外,导电高分子很快也应用到了场效应管中,这种应用很有可能会带来下一步高分子材料的规模性应用。另外,纳米复合技术及其材料还被应用到了高分子的发光二极管中,这项应用时至今日仍然是社会讨论和研究的热门课题。就目前纳米复合技术及其材料在电子器件中的应用之一“发光二极管”在性能上已经非常成熟,完全可以和那些无机的发光材料相提并论了。另外,除了聚乙炔,还出现了新的材料比如聚噻吩和聚吡咯,这些材料所制成的二极管都已经陆陆续续被用在商业中,制成商业产品了。纳米复合技术及其材料所制成的发光二极管在性能上相对传统的二极管而言,具有成本低、可弯曲、可调色和面积大等特点。另外,纳米复合技术及其材料已经进入到电子器件的寿命和发光效率的研究领域了;这表明这种先进的科学技术的应用领域将会更加巨大,另外,这项研究也是实现导电高分子技术更加实用化的有效途径。

2.在电磁屏蔽领域上的应用

在导电高分子技术出现之前,人们用来对电磁进行屏蔽的材料一般都是铜,这种屏蔽材料和方法自身在性能上的不足导致了电磁干扰的情况非常严重;另外,使用铜来进行电磁的屏蔽并不能很好地满足手机、电脑、电视机、计算机房和一些医疗设备比如心脏的起搏器等的需求。在对人体健康愈加重视的今天,对相关的设备进行良好的电磁屏蔽已经越来越被重视。通过对导电高分子技术的研究也实验发现,在对电磁进行屏蔽的过程中将导电高分子特别是纳米复合的技术及其材料融合在其中,不仅能够起到防止静电、对电磁进行屏蔽的特点,还具有成本低和可塑性强不受形状影响的优异性能,是一种屏蔽电磁干扰的理想材料。随着研究的不断深入和发展,目前,导电高分子中的纳米复合技术及其材料应经被应用在电脑的屏保中了,这项应用能够有效防止电脑的电磁对人体的辐射。另外,在众多的纳米复合材料之中,聚苯胺的防电磁辐射性能最受重视。

3.在电池中的应用

纳米复合技术及其材料本身具有很好的掺杂与脱掺杂性能,如果将其应用在电池中,将会带来良好的效果。目前,对于高分子材料中的聚乙炔材料电池的研究已经基本成功了,这款由日本生产出来的电池比传统的电池要更加轻便,因此受到了消费者的青睐。另外,聚吡咯也具有很好的稳定性和高掺杂度,这种材料对电的敏感性也非常高,即使是在纺织物中图上这种材料,也能让其具有良好的导电性;所以,聚吡咯正在被研究应用在对低浓度、可发挥的有机物进行监测的传感器中,这种传感器具有很高的灵敏度。另一种纳米复合材料乙烯也已经开始使用在太阳能的电池中以及二次电池中;这种材料的使用有可能会使二次电池成为更加大众的商品,但是这种材料在稳定性和耐久性中的问题目前还没有得到很好的解决。另外,导电高分子的纳米复合技术及其材料在太阳能电池中的应用也已经开始尝试了。和一般的无机光电材料比较,这种导电高分子的材料具有价格便宜、能够规模生产、制造简单和对太阳光中的物质进行筛选选择等优点,但是这种材料也具有稳定性较差、阻值比较高的缺陷。

4.在导电橡胶中的应用

导电高分子材料本身具备良好的导电性,通过不同的纳米复合技术掺杂和加工所生产出来的聚乙炔在导电性能上可以达到铜的效果,只是目前这种高分子的材料的导电稳定性不够,所以还没有被广泛使用。不过,通过纳米复合技术研究出来的导电橡胶的使用意义非常大。这种导电的橡胶在一般情况下并不会导电,不过,只要对其施加压力,就能够使其产生导电的效果,并且这种导电的效果只是出现在被施加压力的部位,没有被施加压力的地方的绝缘性能非常好。目前,这种导电橡胶已经被广泛应用在防爆开关、压敏传感器、医用电极、加热原件和高级的自动把柄中去了。

二、导电高分子中纳米复合技术的前景

虽然纳米复合技术在屏蔽电磁干扰、光电子原件、能源等方面都已经得到了很多的应用,但是其实用化还是没有得到充分的利用,甚至说其应用尚未实现实用化。目前,这些材料很多还是停留在“材料”的层面上,而产品层面还是比较少。在未来的研究工作中,主要研究的方向有:

1.对纳米复合技术及其材料在稳定性和加工型方面的研究。就目前来说,导电高分子的材料很多在导电性、加工性和稳定性的融合上还做得很不足,解决这一问题的一个比较有效的方向是对可溶性的纳米复合材料进行合成。

2.对纳米复合技术及其材料在自掺杂和不掺杂方面的研究。材料不稳定以及掺杂剂本身不稳定往往会对纳米复合材料在导电性能方面产生影响,所以对纳米复合技术及其材料在自掺杂和不掺杂方面的研究能够有效结局材料在稳定性方面存在的问题。

3.对纳米复合技术及其材料在绿色生产上的研究。这项工作同样引起了很大的关注。在研究的过程中如果能够解决导电高分子的纳米复合材料在加工上更加绿色的要求,将是一场对传统的电子元件提出挑战的革命。

参考文献

[1]王彦红,王景慧,岳建霞,罗青枝,王德松.导电高分子纳米复合材料研究进展[J].化工时刊,2007,(01).

[2]柯一礼.导电聚苯胺的研究及其应用前景[J].建材世界,2009,(05).

纳米技术的前景范文篇9

纳米技术正全力推动着化学工业未来的发展。随着一些纳米技术的工业产品问世以及所显示出的诱人前景,现在“纳米技术”已经成为家喻户晓的名词。纳米技术能在<100nm的水平上合成、处理和表征物质,这是一个涉及多门学科的广阔领域,它包含有:纳米材料(nanomaterials)、纳米生物技术(nanobiotechn010gy)、纳米电子学(nanoelechonics)和纳米系统(nanosystem),如纳米电子机械系统NEMS和分子机械(m01ecularmachine)等。而纳米技术在化学工业中的应用,主要是新型催化剂、涂料、剂,过滤技术以及一些最终产品,诸如纳米多孔材料制品和树状聚合物制品已成为化学工业的创新点。

一、化学反应和催化方面应用

化学工业及其相关工业,特别是一些化学反应起着关键性作用的产业盛行用纳米技术来改进催化剂性能。纳米多孔材料中的沸石在原油炼制中的应用已有很长历史,纳米多孔结构新型催化剂的发展,为许多化学合成工艺的创新提供了机会,或者使化学反应能在较温和条件下进行,大幅度地降低工艺成本。例如用此类催化剂可以将甲烷有效地转化为液体燃料,作为柴油代用品,而现用的方法比较昂贵。

纳米粒子催化剂的优异性能取决于它的容积比表面率很高,同时,负载催化剂的基质对催化效率也有很大的影响,如果也由具有纳米结构材料组成,就可以进一步提高催化剂的效率。如将Si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。在某些情况下,用Si02纳米粒子作催化剂载体会因SiO2材料本身的脆性而受影响。为了解决此问题,可以将SiO2纳米粒子通过聚合而形成交联,将交联的纳米粒子用作催化剂载体。

在能源工业中,Shenhua集团公司、Hydrocarbon技术公司和美国能源部在中国进行煤液化项目建设,采用了纳米催化剂,取得了20亿美元效益。此工艺可以生产非常清洁的柴油,在中国许多地方它可与进口原油或柴油(以全球平均价格计)竞争。燃料电池也是纳米催化剂起重要作用的领域,当前工业样品应用的是铂催化剂,约2nm宽。

二、过滤和分离方面应用

在过滤工业中,纳米过滤(简称纳滤,nanofiltration)广泛应用于水和空气纯化以及其它工业过程中,包括药物和酶的提纯,油水分离和废料清除等。还可以从氮分子中去掉氧(氧与氮分子大小差别仅0.02nm)。应用此方法生产纯氧可不需要采用深冷工艺,因而可以降低成本。法国于2000年在GeneraledesEaMx建成世界上第一座用纳滤技术生产饮用水的装置,所用聚合物膜其孔径略<lnm。与传统净化工艺相LL,虽然电能消耗较高,但带来一些其它的好处,如不需要用氯。

由于可以精确地控制孔径,所以具有可观的近期应用前景。美国PacificNorthwest国家试验室已经创制一类称之为SAMMS结构,为在介孔载体上自组装的单层结构,含有规整的1-50nm的圆柱形孔,孔上用自组装方法涂上活性基团单层,可用于不同领域。已经利用SAMMS成功地从水溶液和非水溶液中萃取出各种金属和有机化合物。

纳米多孔材料的吸收和吸附性能也提供了在环境治理方面应用的可能性,如去除重金属(如砷和汞等)。使用其他纳米材料的过滤技术也取得了长足进步。例如入rgomide纳米材料公司开发的用直径为2nm纤维制成的高产率系统,可以过滤病毒、砷和其它污染物。

一些聚合物—无机化合物复合材料也可用作气体过滤系统,而且效率也很高。如有一种用排列成行的碳纳米管(nanotLlLe)制成的膜,由于纳米管与气体分子间互不作用,可以高产率地分离出气体。此种材料可满足高流速低压气体的分离需要。此种膜可以从气流中去除CO2,或从CO中分离H2。这种技术可应用于新一电厂、煤液化工厂或气体液化厂。

由精密控制尺寸的纳米管组成的膜在分离生物化学品方面也具有很大潜力。

三、复合材料方面应用

在复合材料中使用纳米粒子可以提高材料强度,降低材料的重量,提高耐化学品、耐热和耐磨耗能力,而且还可赋于材料一些新的性能,诸如导电性,在光照和其他幅照下改变其反应性能等。

以粘土为基础的纳米复合材料在不久将来会有很大的市场。以碳纳米管为基础的新型结构复合材料的开发也为期不远,它的主要问题是成本较贵,要用好的填料(单壁纳米管)。大规模应用较大而不太完善的碳纳米纤维可望在2004年实现,此发展可能会给纳米粘土复合材料的应用形成冲击。

一些公司计划扩产纳米粘土也反映出其发展潜力。如Nanocor公司已转产纳米粘土,每年2万吨。许多主要聚合物公司也在开发纳米复合材料技术。RTP公司已将有机粘土/尼龙纳米复合材料制成薄膜和片材。Triton

System公司应用纳米二氧化硅与一种聚合物材料制成纳米复合材料,开发成一种涂装材料。其它HoneyWell,Ube工业和Unitika等公司已工业规模生产尼龙纳米复合材料用作包装HBP材料,Nanocor最近与三菱气体化学公司联合

制造并出售HBP包装材料。用于食品和饮料行业。Bayer打算用尼龙6纳米复合材料制造多层包装膜,此膜的氧穿透率减少l/2,透明度和韧性有提高。近期,人们关注的另一种纳米复合材料的填料物质,是一种较为复杂的分子多面齐聚物(polyl、cdral01ig(mericsilsc5quioXanes,POSS)。Hybrid塑料公司称其可以大量生产POSS,并与塑料生产厂商和用户进行合作。

四、涂料方面应用

在涂料行业CTJ。纳米粒子已经起着很大的作用,但是,类似于能生成抗刮痕和不粘表面的涂层的溶胶—凝胶单层(solgclmonlolaycr)还在研究。用树状聚合物可以弥补不足,并且可与纳米粒子技术结合应用。

以纳米粒子为基础的涂料具有各种优异的性能,比如:强度、耐磨耗、透明和导电。拜耳公司与Nanogntc公司合作开发导电和透明的涂层。纳米粉体是难以储运的,美国海洋部门采用微型凝聚(microscalengglomerate)方法,即在应用时用等离子(一种热的离子化气体)技术或热喷涂技术,使粉体被融熔,形成涂层。拜耳公司与HansaMetallWerke公司用纳米粒子进行抗水和抗灰尘涂料开发。据中国环氧树脂行业在线记者了解,2002年BASF公司推出一种用纳米粒子和聚合物制备的喷涂涂料,在干燥时自组装成一种纳米结构的表面,呈现出类似荷叶的效应,即当水落到表面上,由于与表面的互粘性甚小,可以形成水珠而流去,并把灰尘带走。

Inframat公司用纳米涂料作为船壳防污涂料。以防止海藻、贝类附着生长。此种涂料很坚硬。但并不发脆。该公司的纳米氧化铅-氧化饮基陶瓷涂料已获得美海军部门400万美元订货,主要用于涂装潜水艇的潜望镜。应用纳米粒子技术可以制造氧化铝纳米粒子,用于地砖的抗划痕涂层。Nanogate公司为西班牙地砖制造商提供纳米粒子涂料,使之容易清洗,并还为眼镜工业提供抗划痕涂料。

用纳米粒子强化的涂料还可能在生物医用方面应用。例如铜的纳米粒子可以降低细胞在表面上生长,从而解决移植上的一个主要问题。

五、添加剂和树状聚台物的作用

在复合材料领域中,纳米粘土和POSS已经取得进展。在不远的将来,碳纳米管可能产生较大影响。但是,各种不同形状的树状分子结构以及它能易于功能化的性能,可以创制特殊结构的复合材料,使之具有各种性能。早在上世纪90年代中期,BertMeijer教授就阐明了树状聚合物的结构,它是一群小分子,或是小分子的容器。一个“树状聚合物箱”(I)endrimerbox),如同有一个硬壳建于软性树状聚合物周围。如果一个小分子,如染料分子进入树状聚合物中,即可被封装在空穴中。通过对其末端基因的化学改性,全部或部分烷基化,树状聚合物就可以形成与线型聚合物可化学兼容的物质,以改进混合性能。在此情况下,树状聚合物的作用在于创建了分子微观环境,或是在塑料原料中形成“纳米观口袋”(nanoscopicpocket)来聚集染料分子。作为一种形态的、结构的或是界面改性剂,树状聚合物还可提高材料韧性,而对其加工性没有影响。在材料共混和复合中,它们还起着材料组分间的兼容剂和粘接剂的作用,因此可用于工程塑料添加剂。树状多支链聚合物已经被用作环氧树脂的增韧剂,加入重量比5%的树状聚合物可显著提高材料的坚韧性。通过可控相分离工艺,可以使树状聚合物良好地分散在树脂中,树状聚合物和树脂作用可以使接枝在树状结构上的环氧基团的化学键得到加强。杜邦公司制造和应用多支链结构物质作为聚合物共混中的添加剂,可以改善聚合物的加工性能。DSM公司已经将多支链的聚丙烯亚胺(PPl)聚合物工业化,主要用于廉价塑料和橡胶制造中作为添加剂,降低粘度。在涂料、油墨和粘合剂生产中也可应用。美国宇航局向DowCorning公司和MatcrialsElectrochemicalResearch公司进行项目投资,开发等离子沉积树状聚合物涂料和树状聚合体富勒烯纳米复合材料,以用作微型和亚微型表面。

六、树状聚台物及去污作用

树状聚合物特别适用于去污,它起着清道夫的作用,可以去掉金属离子,清洁环境。改变一种介质的酸度可以使树状聚合物释放出金属离子。而且树状聚合物可以通过超过滤进行回收和冉用。树状包覆催化剂可用此同样方法从反应产物中进行分离。回收再用。密西很大学的生物纳米技术中心计划开发树状聚合物加强超滤方法,作为新的水处理上艺.从水中去掉金属离子。树状聚合物可以在其分子小间或是在它们的经改性的终端基团上捕捉小分子。

使其能适用于吸收或吸附生物和化学污染物。美国军事部门对它的应用前景作了好的评价。

七、纳米保护(nano-protection)方面应用

树状聚合物在护肤膏中作为一种反应型的组分是很有效的。此应用可以扩展到保护衣服。固定的树状聚合物层可以抗洗和耐环境气候条件变化。有一种称之为“类似树状聚合物”(Amphilicdondrimcr),它一半是树状聚合物,另一半具有末端结构,用以在保护膜中固定活性树状聚合物。

近年来,“一些部门在研究用纳米粒子来监测和防止化学武器袭击。Nanospherc公司不久前推出一个系统,可以用来监测生物武器,如炭疽菌。该系统采用美国西北大学开发的金纳米粒子传感器。Altair纳米技术公司和西密西根大学联合开发用二氧化钛钠米粒子为基础材料的传感器,可用来监测生物和化学武器。NanosPhere材料公司开发氧化镁纳米粒子用于口罩的过滤层,因为它能杀大细菌(包括炭疽杆菌)。深圳新华元具纳米材料公司和Nucrgst公司生产银纳米粒子用于抗菌服。NanoBio公司推出一种抗菌液,可以破坏细菌孢子、病毒粒子和霉菌,它的作用是让表面张力发生爆炸性释放,而这种产品对人体组织不起伤害,现在主要用户是美国军事部门。

八、燃料电池方面应用

随着对便携式电子产品电能需求不断增加。要求降低供电元器件的重量和尺寸,由此而开辟广纳米粒子的新市场。

AP材料公司与Millennium电池公司合作执行美国军方一份合问。开发纳米级二硼化钛用于高级电池组和其它储能系统。Altar公司最近宣布该公司高级固体氧化物燃料电池系列示范试验获得成功,包括联结器、电解质、阴极和阳极等都是由微米和纳米级材料构成。而且,还开发了纳米锂基电池电极材料,其充电和发电率都比当前所用锂离子电池材料快l倍。

有一些公司计划工业生产甲醇基燃料电池,在2004年前后应用于便携式电子设备。在这类电池中,所用催化剂是处在淤浆状态的铂纳米粒子。针对电池应用,Brookhaven国家试验室已制成锂-锡纳米晶体合金,用作高性能电极。用氢化锂与氧化锡反应,前者需过量使反应完全。生产的锂—锡合金中含有剩余氧化铿。重复用氢处理最后生成粒径为20~30nm纳米复合材料,形成稳定金属氢化物的其它元素也可用此法制造纳米复合材料,未来的应用不仅在电池领域,还可以用在催化方面。

纳米技术的前景范文

关键词:立体显示;体三维立体显示;变焦纳米液晶透镜

中图分类号:TN873文献标识码:A

ThreeDimensionalVolumetricAutostereoscopicDisplay

BasedonVarifocalNano-liquid-crystalLens

SONGShi-jun,WANGQiong-hua,LIDa-hai,ZHAORen-liang,ZHANGChao

(SchoolofElectronicsandInformationEngineering,

SichuanUniversity,Chengdu610065,China)

Abstract:Three-dimensional(3D)autostereoscopicdisplayisafrontiertechnology.Wehaveproposeda3Dautostereoscopicdisplaysystembasedonelectricallycontrollableliquid-crystal(LC)varifocallens.Thevarifocallensoperatesathigh-speedof50Hzforflicker-freedisplay.Gradientrefractiveindexnano-polymerdispersionLC(GRINPDLC)lensisfabricatedbyultravioletexposurethroughphotomask.Wedevelopedahigh-speed2Ddisplay,e.g.CathodeRayTube(CRT)tohandleallthedepth-sampledimages.Sucha3Ddisplaysystemisanovelvolumetricautostereoscopicdisplayscheme.Aprototypeofthedisplayisunderway.

Keywords:autostereoscopicdisplay;volumetric3Ddisplay;varifocalnano-liquid-crystallens

1引言

信息显示是当今电子信息时展的重要技术之一。目前通常的显示几乎都是二维(2D)平面的。所谓三维(threedimensional,3D)立体显示是指能显示图象深度(第三维)效果,就像我们看真实世界一样,是立体的。3D显示分为佩戴眼镜的3D显示和不戴眼镜的自动3D显示(也叫真3D显示)两大类。前者除了因戴眼镜使观看者不方便外,还会令人疲劳和头晕,不便长期观看,更不利于一些人群,如儿童观看。后者是3D显示的前沿技术,将沿着三个方向发展,即电子全息术、方向多路显示和体显示。真3D显示不会造成观众的视疲劳,特别是体3D显示能提供满足人体对立体深度的所有暗示,类似于人们对自然物体的立体感。3D显示有着广泛的用途。显示真实的三维世界是人类的梦想,也是从事显示技术研究的科技人员和显示器制造商苦苦追求的目标。3D显示技术成为当今一个引人注目的前沿科技领域。日本、韩国、欧美等国家开发了相关的各种技术和产品。我国在该领域的研究还相当薄弱。

纳米技术是20世纪90年代出现的一门新兴技术。纳米聚合物分散液晶(PDLC)具有可见光透明、响应时间快的特点,在显示和通讯领域有着特殊的应用,成为液晶领域的研究热点。

本文结合3D显示技术前沿和纳米新技术,并在2D显示器和液晶透镜研究的基础上提出采用变焦纳米液晶透镜的体3D立体显示方案。

2变焦纳米液晶透镜的体3D立体显示器的原理与结构

采用变焦纳米液晶透镜的体3D立体显示器由快速2D显示屏和变焦纳米液晶透镜组成,如图1所示。其原理是:用带有变焦透镜的摄像机连续拍摄景物不同景深的2D图像,然后人眼通过同样的变焦透镜来观看按同样时序带有景深信息的该2D图像,3D立体图像就重建于一个空间内。如果景深变化频率在人眼视觉暂留范围内(如50Hz),人眼就能见到连续的3D立体图像了。

为了满足景深变化的需要,该立体显示器的2D显示屏必须具有响应速度快的特点,比普通电视图像的响应速度快数10倍。常规2D电视机和计算机显示屏,如CRT(阴极射线管)和LCD(液晶显示)的响应速度还远达不到,因而必须研制快速2D显示屏。若采用CRT,需要研制快速响应荧光粉等,技术相对简单;若采用LCD,则更具挑战性,因为如今的液晶电视技术是在突破了液晶的响应速度的基础上发展起来的,在快速响应液晶方面,已采用了许多新技术,要满足该立体显示器快于普通液晶电视数十倍的响应速度,需要更新的技术突破。

该系统中的变焦透镜需满足可见光范围透过率高、响应速快、驱动电压低、适当的调焦范围,以及与2D显示屏的同步性好等要求。为此,拟采用电动变焦纳米PDLC(聚合物分散液晶)。因为纳米PDLC的颗粒远小于可见光波长,其透明性相当好。而且纳米级液晶小颗粒具有响应速度快的特点,约100ns,大大满足景深调制50Hz的需要。由于电动调焦,容易实现与2D显示屏的同步。

我们将采用独特的材料和方法来制作纳米PDLC。将聚合物单体、向列相液晶、光引发剂、交联剂和协引发剂组按比例(重量比)称量好,在暗室中均匀混合加热到各向同性态后,注入到由氧化铟锡(ITO)导电玻璃制作的样品盒内,配制的样品尽可能马上进行曝光。对于常规的PDLC,2~5μm大小的液晶微滴分散在聚合物中。采用独特的配方,如采用快速聚合速度的聚合物单体NOA81或NOA65,聚合物单体在相分离之前就产生聚合物网络,可使PDLC中液晶微滴尺寸降到100~200nm,使它成为一种纳米PDLC;另外,液晶的浓度比常规的PDLC要小,如35%左右(常规40%~80%),以保证获得纳米PDLC。

该方案的电动变焦纳米PDLC透镜采用一个叫做梯度折射率纳米(GRIN)PDLC变焦透镜。这个GRINPDLC是均匀紫外光通过具有一定图案的光刻掩模板对液晶/单体进行曝光,从而获得纳米颗粒的梯度尺寸分布而得到透镜特性的,其原理如图2所示[9]。因为弱的紫外光曝光区就形成较大的液晶颗粒,这些较大的液晶颗粒就会具有比小颗粒更低的阈值电压。当均匀电场施加在这个液晶盒上时,由于存在不同的阈值电压,液晶颗粒将具有不同的分子取向,从而导致具有梯度分布的折射率。通过改变光掩膜板的图案,就能实现透镜和微镜阵列。图案掩膜制作PDLC透镜的方法具有制作简单、工作电压低、响应速度快等优点。

纳米PDLC具有透明性好,响应速度快的优点,但缺点是工作电压高,为此我们采取措施降低驱动电压。液晶和聚合物材料的介电和粘度性质、液晶微滴的尺寸、器件厚度决定了PDLC的驱动电压。特别是驱动电压与液晶微滴尺寸成反比,对纳米PDLC驱动电压的影响更是非常突出。而且,由于纳米PDLC液晶微滴很小,被聚合物基体紧紧包裹,它们与聚合物的表面相互作用,即表面锚定能很大,需要更高的电压才可以使液晶分子运动。由于小尺寸液晶微滴是PDLC的一个固有特点,因此降低驱动电压只能通过提高聚合物的导电率或者降低液晶表面锚定能来实现。据此,一方面我们研究了在配方中添加表面活性剂对纳米PDLC驱动电压的影响;另一方面我们开发新的PDLC制作工艺,以降低工作电压。例如,在紫外光诱导液晶/单体相位分离时,施加较强的电压。

3结论

基于电动变焦GRINPDLC透镜的3D显示器是一个全新的体3D显示方案。该系统能提供满足人体对立体深度的所有暗示,类似于人们对自然物体的立体感,不会造成视疲劳。而且,由于在2D显示器上实现3D显示,3D显示将与现存的2D显示兼容,就像彩色显示与黑白显示是兼容一样。该体3D显示器的实验工作正在进行中,一旦研制成功,将具有可观的应用前景。

参考文献:

[1]TakashiKawai.3Ddisplayandapplications[aJ].Displays,2002,23:48-56.

[2]王琼华,成建波,杨刚,三维立体显示技术综述[R],2004中国平板显示学术会议,2004,215-217.

[3]TakanoriOkoshi.ThreeDimensionalImagingTechniques[M].NewYork:AcademicPress,1976.

[4]ElizabethDowning,etal.Three-color,solidstate,three-dimensionaldisplay[J].Science,1996,273:1185-1189.

[5]ShiorSuyama,etal.Three-dimensionaldisplaysystemwithdual-frequencyliquid-crystalvarifocallens[J].Jpn.J.Appl.Phys.,2000,39:480-484.

[6]姜太平等.真三维立体显示技术[J],中国图像图形学报,2003,8A版(4).

[7]QiHong,ThomasX.Wu,RuiboLu,andShin-TsonWu.Reduced-aberrationtunable-focusliquidcrystallensesfor3Ddisplays[J].SIDSymposiumDigest,2007,496-498.

纳米技术的前景范文篇11

关键词纳米点应用

近几年,射频磁控溅射制备金属纳米颗粒复合膜是许多方法中最好方法之一,可以在可控条件下和低温环境中获得均匀的覆盖薄膜,可以将金属颗粒均匀分散到半导体衬底中,这样就比其它方法更能有效的控制金属含量,而使复合膜中的金属量达到很高的值。也可以用生长的Au/SiO2一维纳米材料作为模板,基于VLS生长机制催化生成理想的纳米点或者纳米线。这种用模板催化方式生长纳米线或者纳米点的工艺较其它方法更简单。利用模板合成纳米结构的方法给我们创造了更好的条件来控制复合纳米的性质,进而在纳米机械器件和纳米电子制备方面有重要意义。本文浅述了纳米点的可能的发展应用前景并初探了自组装生成Au纳米点工艺。

一、复合材料纳米点的发展应用前景

纳米点,也称半导体量子点(纳米微晶),是一种比较小的纳米微粒。纳米微晶的基本性质基于本身量子点的量子效应,当微粒尺寸进入到纳米级别时,将会引起宏观量子隧道效应、尺寸效应和表面效应,进而展现出许许多多不同于宏观材料的物理化学性质,在生命科学、量子器件、医药等方面具有非常好的应用前景,同时将对电子信息技术、生命科学的发展产生深远的影响。

(一)在生命科学中的应用

在生命科学领域纳米微晶的主要应用前景就是在生物科学中作荧光探针,传统的荧光探针激光光谱窄,且不连续,而纳米微晶的激光光谱宽且连续,颜色可调,而且量子点的光化学稳定性高,不易分解。同时纳米点很有可能使筛选药物成为可能。将不同光谱的纳米点与不同靶分子的药物相结合,就可以一次性检测药物分子。纳米点还可以应用在医学成像方面。因为可见光只能穿透厚度为毫米级的组织,而红外光线则可以穿透厚度为厘米级的组织,因此我们可将在红外区发光的纳米点标记到要检测组织的组分上,同时用红外光激发,通过成像的方法来检测组织内部的情况,从而达到诊断的目的。纳米点在生物芯片发展历程中也可以大显身手。例如在研究蛋白质与蛋白质相互作用的生物芯片中,尽管生物芯片上有非常非常多的蛋白质,可是由于受传统荧光探针性能的限制,通常一次只能将一种或几种标记了荧光探针的蛋白质与生物芯片相作用,从而进行检测。要研究多个蛋白质就必须重复操作,降低了效率。如果我们在芯片的应用中引入了纳米点情况则可能不同,基本可以做到“很多”对“很多”。纳米微晶还可以应用于溶液矩阵,即将不同的纳米点或纳米点微粒标记在每一种生物分子上,并置于溶液中,形成所谓溶液矩阵。进行标记了的生物分子在溶液状态下很容易保持生物分子的正常三维构象,从而具备了正常的生物功能,这是其优于平面芯片的地方。

(二)半导体纳米点的器件应用

纳米点的生长工艺及其性质成为当今纳米材料的研究热点,目前最常用的制备纳米点的方法是自组织生长方式。纳米点中较低的态密度和能级的尖锐化,导致了纳米点的结构对其中的载流子产生三维量子限制效应,从而使其光学性能和电学性能发生了变化,而纳米点在正入射情况下才能发生明显的带内跃迁。这些性质都使纳米点在各种光电器件、单电子器件以及其他器件方面具有极为广阔的应用前景。

纳米点复合材料及纳米点激光器是半导体技术领域中的一个前沿性课题。纳米点复合材料基于它的量子隧穿、尺寸效应、以及非线性光学效应等是新一代固态量子器件的基础,在未来的光电子学、新一代超大规模集成电路和纳米电子学等方面有着极其重要的应用前景。我们采用自组装方法直接生长纳米点复合材料,可将纳米点的横向尺寸缩小到几十纳米之内,接近纵向尺寸,并可获得无位借、无损伤的纳米点,现己成为纳米点复合材料制备技术的重要手段之一,缺点就是纳米点的均匀性不好控制。以纳米点结构为有源区的纳米点激光器理论上具有更高的光增益、更宽的调制带宽、更高的特征温度和更低的阂值电流密度等优点,将使激光器件的性能有一个质的飞跃,对未来半导体激光器件市场的发展方向产生巨大的影响。近几年来,日本、欧洲、美国等国家都开展了自组装纳米点材料和纳米点激光器件的研究,取得了很大进展。

当然在除了采用面发射激光器、纳米点材料研制边发射外,在其他的光电子器件上纳米点也得到了非常非常广泛的应用。

二、自组装法生长Au纳米点工艺

纳米技术的前景范文1篇12

有人说:谁输掉了纳米,谁就输掉了未来。纳米,十亿分之一米的长度,却主宰了崔铮的工作和生活。

在国际微纳米加工领域,崔铮可谓无所不精。他是英国卢瑟福实验室第一个获得永久职位的中国人,在那里一口气工作了16年,担任了长达10年之久的团队带头人,出版74本专著,算得上功成名就。

“那时在英国,总觉得自己的能力可以做更多的事情,但还是有一个无形的天花板在上面。”谈起当年“落入俗套”的日子,习惯微笑的崔铮略显沉吟。

“”到来得恰逢其时,不同于以往科学院的“百人计划”和教育部的“长江学者”计划,它的门槛更高,可以做的事情也更大。

“这绝对是一个机会。”崔铮把目标瞄准了一个方向――回国。

“”对入选者的要求十分苛刻,却可以自由选择落户单位。2008年的最后一天,苏州纳米所所长杨辉接到一个意外的电话,崔铮在那边说,自己刚刚在北京参加了“”活动,希望能申报“”到纳米所工作。杨辉高兴极了,当场亮出态度:“非常欢迎!你的电话是我们最好的新年礼物!”

若水路398号――苏州纳米研究所所在地,是中国纳米技术产业最为集中的区域,中国纳米技术产业创新基地正在此打造。这里拥有近2000名纳米技术专业人才未来还将是一座“纳米之城”。崔铮发现,苏州纳米所的办事效率快得惊人,人还没到,仪器已经订好。等他辞去全部职位从英国赶来,一切已经顺水顺舟。这边的环境跟国外十分相似,人少,车少,清静安谧,特别适合做学术。

苏心纳米所是院地合作的部级科研机构,除了注重基础性研究之外,更注重产业化,即对地方经济的拉动作用,崔铮觉得,“这样的机制更加有助于科研成果转化。”

回国后,崔铮的生活一下忙碌起来,学术邀请纷至沓来,他所执掌的公司也已经正式运营,他的投入使得中国在这一领域快速与世界接轨。

崔铮对“”带来的益处感同身受,在他眼里,“是一个很高的平台。”走到哪里都受到尊重。

作为苏州纳米所唯一的“千人”,崔铮签了5年的合同,虽然才过去两年,实验室的墙壁还崭新如初,但是,在国际领先的研究方向上,崔铮和他的团队已经尝到了收获的甜头。

印刷电子技术的领军人物

回国后,崔铮在国内开辟了新的研究方向一一印刷电子技术,这一领域比他过去所从事的微纳米加工专业有着更好的应用前景。虽然欧洲、美国,韩国等都有人在做,但在国内却是空白。

中国是世界印刷大国,从事与印刷相关行业的企业达18万家,但在将印刷技术用于电子器件与系统制造这样一个市场潜力巨大的应用领域,国内的科研资源与科研力量投入严重不足,致使中国在印刷电子技术领域远远落后于欧美和亚洲国家,崔铮所开创的印刷电子技术在国内相关领域算是一次“开局”。

其实,早在英国时,崔铮就跃跃欲试想要转向,可惜当时时机不成熟,未能如愿。回国后,作为“”引进的人表纳米所划拨给崔铮1000万元人民币,崔铮利用这笔经费,组建了实验室并配备了科研团队。整个团队15人,来自香港、芬兰和内地院校,齐刷刷都很年轻。

“事情就这么做起来了”他笑着说,背后的艰辛不言而喻。

所谓印刷电子技术,用崔铮的话说,就是用印刷的方法做电子器件。

“你知道,集成电路板,芯片,是在硅上用复杂的加工方法做成的。我们是把同样的电子器件用印刷的方法做在纸张、塑料和玻璃上。”

听起来有点天方夜谭,但是,这些看起来像一张张“塑料纸”的东西,确实就是电子器件,用印刷的方法,1分钟可以做10多米,宽度可以达到1米甚至更宽,成本却下降了很多。

在过去几年中,印刷电子已经从显示器、电子纸扩展到了环绕照明、传感器、电池甚至触发器。大面积、低成本、柔性化是这一技术的最大特征。拿起一张酷似胶片的智能标签,崔铮的眼睛放着光亮。利用这一技术制作的柔性智能标签,拿在手里,卷折自如。崔铮说,采用这种方法,未来的电子书可以随意弯曲,也更接近纸张的特质。

过去做起来十分复杂的电子器件,崔铮的小组现在用一台喷墨打印机就可以“摘定”。过去一个智能标签要20美分左右,现在只要三四美分,甚至更低。可口可乐和联合利华这样的公司甚至声称,如果成本降到1美分,他们会考虑将每件产品都贴上这种标签。显然,这一技术的应用前景不可限量。

崔铮告诉记者,“将来的广告牌用打印的方式去做,不仅有图像,还可以信息互动。”成本降低,利用率提高,比条形码包含的信息要多得多。将来,电子车票、出入卡、信用卡等都可以通过印刷电子技术来制作。

这一技术的应用也在其他领域不断延伸,比如太阳能电池,通过印刷的方式,把光伏材料印在塑料上,就可以接收太阳能发电,帐篷、雨伞、背包上都可以使用。

崔铮的团队还率先在国内首次实现了全打印薄膜晶体管技术。通俗地说,就是把晶体管用打印的方式做出来。

“也就是把原来的半导体材料做成墨水,然后再打印出来。这些材料多是纳米形态,一旦变成纳米之后,再加上溶剂,就可以变成液体。”

说到这里,他打着手势做了一个通俗的比喻:比如面粉,加上水就调成了糊状!一手科研,一手产业

2010年,因为“在中国开辟了印刷电子技术研究新领域,并积极推动科技向产业的转移。”崔铮被评为“科学中国人年度人物”。

也是这一年,崔铮主持了全国首届“印刷电子技术研讨会”,并成立了“印刷电子技术研究中心”。在他的带动下,很多人开始对印刷电子技术萌发了兴趣。

一手科研,一手产业是崔铮回国后的新形象,地方政府也鼓励科技同产业结合。面对潜在的巨大市场,前不久,崔铮成立了自己的公司

苏州纳格光电科技有限公司。“市场很大。”他说。“看好了才去做的。”

已经有4家公司准备采用崔铮团队所研发的透明导电膜。前不久,在美国举行的印刷电子技术峰会上,很多公司对这项技术表示了兴趣。

崔铮曾经预言,2030年,中国城市将进入纳米时代。微小化是当前科技发展的一个趋势,纳米技术正在悄悄渗透到人们的衣、食、住、行各个领域。纳米化妆品、纳米领带、纳米食品、纳米建筑涂层……纳米产品层出不穷。“在日常生活中,比如手机,以前只有打电话的功能,现在体积越来越小、功能越来越强,数码相机的摄像头包括电路只有黄豆粒那么大,这些都离不开纳米技术。而护照和身份证也将越来越多地使用纳米技术,更小也更方便。”

更多范文

热门推荐