量子力学的基本理论范例(3篇)
时间:2024-06-06
时间:2024-06-06
关键词:量子力学教学研究哲学思想
“大学之道,在明明德,在亲民,在止于至善。”温故知今,止于至善,提高当代大学生的哲学素养、人文情怀和科学素养,是素质教育的要求之一。以牛顿运动三定律、电磁理论和热力学及统计物理学为基础的经典力学诞生于17世纪,成功地解释了大量物理学现象,取得了辉煌的科学成就,曾经被人们信奉为客观真理。在19世纪末20世纪初,人类以巨大的热情来研究原子核和放射现象,导致了两大理论成果的诞生:量子理论和相对论。随后,激光器、二极管、三极管、集成电路、互联网、移动通信、登月等等,这些辉煌的成就促使人类迈进了信息时代。运动着的电子――一个小小的微观粒子,却促使人类文明进入了电子信息时代。事实表明,现代信息技术的理论基础是物理学,信息的产生、发送、接收和处理,都是由一个个物理的系统来实现,因此信息世界的物理体系归根结底要受到物理定律的制约。现在人们明白了,经典物理理论仅适用于宏观低速运动的物体的场合,而对于微观小尺度下、接近于光速运动的粒子的运动规律误差会变得很大,必须使用相对论和量子理论来描述。而经典物理理论仅仅是量子理论和相对论在低速宏观范围下的良好近似。
量子理论是二十世纪最伟大的发现之一。量子理论的形成和发展,是整个物理学发展中最值得书写的,也是对青年大学生最具有启发意义的过程,在此期间包括了爱因斯坦的奇迹年(1905年)。梳理和探究整个过程中所包含的科学思维,科学方法,科学理论,科学素养……都是值得我们去探索、去深思、去挖掘的。
一、对青年大学生物质观和运动观的进一步加深具有重要意义
科学技术发展到21世纪,人类对于物质世界的认识进入到了纳米尺度。材料学科的研究中出现了很多量子效应。量子理论中的许多不同于经典力学的物理现象颠覆性地发展了经典力学的思维,拓宽了人类认识物质世界的视野,使人们对运动的本质有了更进一步的了解。随着人类认识的不断深入和材料尺寸的不断缩小,电子运动的量子效应愈加明显。现在人们已经明白了,电子既是一种微观粒子,同时也是一种波,这就是所谓的波粒二象性。与经典物理现象不同的是,微观粒子的诸多物理量之间受到量子规律的束缚,其中之一便是著名的不确定性原理,例如时间与能量之间、动量与位置之间等。此外,另一个有趣的现象是电子的势垒贯穿效应,即能量小于势垒高度的电子或者其它微观粒子可以以一定的几率,越过势垒,运动到势垒的右边去。尽管一个理性的人对这种解释可能不满意,但是我们必须明白“隧穿”仅仅是我们为了理解的方便而构造的一个东西,除非人们对量子世界的认识更进一步。我们唯一能确定的是当满足一定条件的时候,隧穿效应就会发生。
二、对青年大学生思维拓展与创新具有重要的启发意义
量子理论是描述微观粒子运动规律的理论,其概念体系与研究宏观现象及其规律的经典物理学有很大的不同。量子理论的出现,是人类对物质世界认识日益深化的结果,为其他自然学科的发展开辟了广阔的前景。从培养研究型科学人才的角度来说,量子理论是与现代科学研究联系最紧密的课程之一。这对当代青年大学生提出了更高、更严格的要求。
第一,必须尊重客观世界的运动规律,坚持创新思维,深刻认识微观世界的规律。规律是物质在运动过程中表现出来的必然的、稳定的、永恒的联系,任何事物之间都有联系,都是矛盾的对立统一体,这就需要在实际的学习探索中抓住主要矛盾以及矛盾的主要方面。同时,矛盾具有特殊性,内因是事物发展的根据,决定着事物发展的方向和主要性质,外因是事物发展的次要因素。在实际的处理过程中要区别对待。
第二,注意量变到质变的积累。量变是指事物单纯数量上的增加或减少,事物保持其质的稳定性。质变是指事物根本性质的变化,“量变质变新的量变”是事物发展的基本规律。注意收集数据,逐步地总结规律。任何重大的发现,都有一个辛苦的积累过程,面对纷繁杂芜的实验数据,如何去伪存真,由表及里,层层剖析?这需要尊重客观规律,逐渐挖掘深层次的信息,切勿急于求成或者违背客观规律。这方面在量子理论的发展过程中体现得尤为重要。
第三,量子理论是开放的理论,对量子理论的争论一直在继续。量子理论过去的成功并不意味着它是一个彻底完善的物理学理论。自量子理论诞生以来,关于量子理论的思想基础和基本问题的争论,从来就没有停止过。人们对于量子理论本身的完备性及其一些基本观念的理解,甚至持有截然不同的观点。其他的理论也是在不断地争论中不断完善。
三、量子力学中的数学思想及其知识框架
量子力学中主要的数学知识,主要是Hilbert内积空间,这是学生在学完微积分初步、线性代数以及概率论后需要掌握的、在工程领域内应用最为广泛的一门数学学科,也是对空间解析几何的推广和延伸。其中包括了对前面提到的几门学科的综合应用,例如量子力学中的力学量,用线性算符来描述,则必须是厄米的;用海森堡的矩阵力学表示,则要求该矩阵的本征值和平均值均为实数;还有,在计算不同物理量表象的矩阵元时,要用到定积分的运算;而不同表象之间的变换,需要用到矩阵变换;此外,在讲到微扰论和变分法时,还需要进一步的用到更多的数学知识。这些数学学科分支的交叉出现,足以让学生对该门课程的进一步学习产生畏惧心理。如何消除和转变学生的这种畏惧心理,这就要求教师在课堂上增强授课的趣味性。事实上,一部量子力学的发展史,包含了太多的启迪、方法、思维和科学研究的因素,因利势导,重视基础知识的讲解,将所有涉及到的数学知识及其发展史,生动地传授给学生。笔者经过近五年的课堂教学,认为对当前的大学本科学生,倘能在授课中能做到这一点,那么,学习《量子力学》的意义就达到了。
结论:以量子理论为核心的量子物理无疑是本世纪最深刻、最有成就的科学理论之一。它不仅代表了人类对微观世界基本认识的革命性进步,而且带来了许多划时代的技术创新,直接推动了社会生产力的发展,从根本上改变了人类的物质生活。让学生在不断的思考和探索中,体会到学习和思考的快乐;对学生的世界观、物质观以及运动观的进一步深入,具有重要的指导意义。
参考文献:
[1]格雷厄姆•法米罗,涂泓等译.天地有大美之现代科学之伟大方程,世界图书出版社,2008
[2]施塔赫尔,范岱年等译.爱因斯坦奇迹年.上海科技出版社,2001,7
[3]曾谨言.量子力学.科学出版社,2010,4
[4]伯特兰•罗素.西方哲学史.中国商业出版社,第1版,2009,1
无论是对于大学生还是研究生,量子力学都是一门最基本的课程。它以极其惊人的精确程度解释微观世界的各种现象,对它的深刻理解和广泛应用,产生了给我们的世界带来革命变革的各种高新技术。量子力学语言今日已经成为物理学家们日常必不可少的重要交流工具。然而,绝大多数物理学家都深知,对于量子力学基础的理解存在着难以克服的困难,甚至使人们产生了这样一种印象,即该理论迄今仍然缺少真正令人满意并信服的理论形式。
许多量子力学教科书阐述量子力学的理论形式,并将其用来理解原子、分子、流体和固体的性质,处理辐射与物质的相互作用,使我们对于周围的物理世界有更深刻的理解。还有一些教科书阐明这一学科的发展历史,指出量子力学经历了哪些步骤才达到了现代形式。
本书对为避免由正统解释量子力学概念的困难而找出的各种替代形式,给出了清晰而客观的阐述,仔细地介绍了各种解释的逻辑性和自洽性。作者力求全面和宽泛地评述对于量子力学中许多看似难以解释、哲学上矛盾和违反直觉的奇妙行为,从而使读者对于我们当前对该理论的理解有更全面的认识。
全书共分成11章:1.历史回顾;2.目前状况,剩余的概念困难;3.爱因斯坦、波多尔斯基和罗森定理;4.Bell定理;5.更多的定理;6.量子纠缠;7.量子纠缠的应用;8.量子测量;9.实验:在真实时间看到的量子扁缩;10.各种各样的解释;11.附:量子力学的基本数学工具。书末还有11个附录,对于正文内容做出一些数学与物理的延伸和补充。
本书作者长期从事量子力学的教学与研究,他与ClaudeCohenTannoudji及BernardDiu合作撰写的《量子力学》(QuantumMechanics)是一部非常著名的教科书,在世界范围内有深远的影响。他在本书中探索了量子力学与生俱来的基本问题和困难,描述并比较了各种各样的解释,讨论了这些解释的成功之处和依然存在的问题。对于那些想要知道量子力学所面对的问题的更多细节但又不具备该学科专门知识的物理和数学的研究人员,本书是理想的参考书;而对于那些对量子物理及其奇特行为感兴趣的科学哲学家也应该很有吸引力;对于想要更进一步钻研量子力学的物理系和科学哲学系的大学生和研究生以及希望扩大自己量子力学知识的理论物理学家,本书提供了难得的和非常有参考价值的丰富资源。
关键词:量子力学;教学探讨;能力提高
1引言
生产力的发展客观需要,推动人们探索微观世界的奥妙,掐指算来,量子概念的诞生已经超过整整100年。但随着科技日新月异的发展,可以毫不夸张地说,没有量子物理,就没有人们今天的生活方式。量子物理的应用已经渗透到现代化生产的许多方面,如半导体材料与器件,磁性材料与器件,原子能技术、激光技术等等。《量子力学》课程的学习已成为国内高等理工科院校“应用物理”“电子科学与技术”“光信息科学与技术”等专业的必修学科基础课。通过该课程的学习,培养学生辩证唯物主义世界观,独立分析问题和解决问题的科学素养,并为“固体电子导论”“光电子学”等后续课程的学习打下良好的基础。
2对《量子力学》课程的探讨
《量子力学》涵盖了基础物理、数学物理方法、概率论、线性代数、矩阵等多个学科领域的内容,特别是基本概念、规律与方法与经典物理截然不同,不能凭借我们所熟悉的经典概念去证明。这些现状导致学生在该课程学习中感觉到难度更大。传统的课堂教学容易陷入纯粹的数学推导而忽略物理情景的建立。
种种现象表明,现存的“单纯授课式”教学方式不符合本课程的教学规律,无法实现其预定的教学目标,必须在各方面加以充分改进。目前,国内外对《量子力学》课程的教学方法已经作了大量的尝试和研究,提出了多种教学方法,如开发生动的多媒体课件、课堂分组讨论、模块化教学等。如何让学生在偏微分方程为主线的教学体系中,理解抽象的量子物理基本框架,并激发和保持学生的学习兴趣,是任课教师需要探索和实践的重要课题,值得花力气去研究。此外,随着时代的发展,量子物理所带来的新技术又层出不穷,大量前言研究成果脱颖而出,如量子通信,量子纠缠,量子密码等。如何将这些最近量子应用技术融入到日常课堂教学中,无疑对教师的教学能力、教学方法和综合素质以及学生的课程学习方式等都提出了更高要求。
问题既是学习的起源,也是选择知识的依据,又是掌握知识的手段,因此在教学实践的基础上,可以尝试以“问题导向”作为切入口,将案例教学、视频教学、科研成果等融入《量子力学》的教学过程,克服抽象的物理图景给学生带来的困扰,增强学生利用所学知识解释现实、分析问题、解决问题的能力,培养学生主动思考和实践创新能力,进而提高教学效果。鼓励学生根据自己的兴趣与基础,在教师的指导下进行专题研究,用现有的专业实验室条件,针对课程理论知识带着问题和专业的实践应用问题,在科研实践中加深知识的理解和运用,逐步提高其创新能力。
3《量子力学》课程问题导向型教学实施建议
3.1学习状态的调查与分析
量子力学可谓无处不数学,因此需要以无记名答卷调查和课间交谈方式,对学生的之前数学物理知识基础,学习兴趣等进行统计和分析,从而为制定合适的教学计划、选取恰当的教学内容和教学方式打下基础。如果没有对具体问题进行严格的数学推导,就无法真正深刻理解基本原理,量子物理的实际应用也就更无从谈起。课程系统学习之前,教师应该把知识点中可能运用到的数学知识梳理后作为参考资料发给学生,便于学生在平时练习中使用。
3.2建立“问题为导向的交互式教学模式”
热门推荐