土壤的本质特征(6篇)

时间:2024-06-19

土壤的本质特征篇1

马尾松以其抗旱、耐瘠薄、生态适应强及防风固沙等特点,在亚热带红壤丘陵地区大量引种、种植,是我国南方的主要造林树种[3]。目前,针对马尾松的研究大多集中在生态系统碳储量[5]、凋落物动态[6]和林地土壤性质[7]等方面,而对于在植被恢复过程中土壤酶活性随林龄变化的研究鲜见报道。

现以不同林龄马尾松人工林为研究对象,分析土壤酶活性随着林龄演变的规律,探讨土壤酶活性对于马尾松造林过程的意义,以期为红壤丘陵区的生态恢复提供理论依据。

1材料与方法

1.1研究区概况

研究区位于江西省鹰潭市余江县(东经116°55′,北纬28°15′)。该区属于中亚热带湿润季风气候区,年均降水量1794mm,年均蒸发量为1318mm,降水主要集中在4—6月,雨量分配极不均匀,干湿交替明显,平均海拔1100m。年平均温17.6℃,年平均日照时数1809h,≥10℃有效积温为5528℃,年均无霜期262d。该区地形以岗地为主,海拔在35~60m,坡度为5°~8°,土壤类型以第四纪红黏土发育而成的典型红壤为主。本研究以马尾松(Pinusmassoniana)林为研究对象,林下植被主要有芒(Dicranopterisdichotoma)、白茅草(Imperatacylindrica)和野谷草(Arundinellahirta)等。

1.2研究方法

1.2.1土样采集。2012年4月,在野外详细调查的基础上,采用空间代替时间法,选择营林、管理方法及坡位、坡向和土壤母质一致的6年(PM6)、12年(PM12)、16年(PM16)、20年(PM20)、25年(PM32)、30年(PM30)和45年(PM45)马尾松人工林为研究对象,选取裸地(CK1)和天然次生林(CK2)为对照样地(表1)。在20m×20m不同林龄马尾松样地内用“S”形采样法选取5点,利用土钻取0~20cm厚的土样,每个土样3次重复。将每个土样去掉石砾、动植物残体及杂质后,混匀,四分法留取约500g土样,将土样分成2份装入塑封袋内带回实验室。一份存于4℃冰箱内用于土壤酶活性测定分析,另一份自然风干,研磨,分别过1.00、0.25mm筛,用于土壤理化性质分析。

1.2.2样品测定。土壤pH值、有机质、全氮、全磷、碱解氮、速效磷和速效钾含量采用《中华人民共和国林业行业标准方法》测定[8]。蔗糖酶、脲酶、酸性磷酸酶、过氧化氢酶和多酚氧化酶活性具体测定方法参照《土壤酶及其研究法》[9]:蔗糖酶活性采用3,5-二硝基水杨酸比色法测定,以24h后1g土壤中含有的葡萄糖量(mg)表示;脲酶活性采用苯酚钠—次氯酸钠比色法测定,以24h后1g土壤中NH4+-N量(mg)表示;酸性磷酸酶采用Hoffman法测定,以12h后1g土壤所消耗酚量(mg)测定;过氧化氢酶采用滴定法测定,以1g土壤20min后消耗0.1moL/LKMnO4量(mL)表示;多酚氧化酶活性采用典量滴定法测定,以1g土壤滤液的0.01moL/LI2体积(mL)数来表示。

1.3土壤酶指数(Soilenzymesindex,SEI)计算方法及相关数据分析

为了全面揭示不同林龄马尾松人工林土壤酶活性的变化规律,进一步采用土壤酶指数(SEI)说明土壤酶活性在植被恢复过程中的演变特征[1]。土壤酶计算公式[2]如下:

SEI=■wi×SEI(xi)(1)

wi=Ci/C(2)

SEI(xi)=(xi-ximin)/(ximax-ximin)(3)

SEI(xj)=(xjmax-xj)/(xjmax-xjmin)(4)

式(1)~(4)中,wi为土壤酶(i)的权重,Ci为公因子方差,C为公因子方差之和;SEI(xi)为升型酶(i)的隶属度值,SEI(xj)为降型酶(j)的隶属度值;(xi)表示土壤酶(i)的活性值,(xj)表示土壤酶(j)的活性值。ximax和ximin分别表示土壤酶(i)活性的最大值和最小值。xjmax和xjmin分别表示土壤酶(j)活性的最大值和最小值。多酚氧化酶采用降型分布函数对土壤酶指数进行计算,其他酶采用升型分布函数对土壤酶指数进行计算。相关性分析及差异性比较采用SPSS13.0(SPSSInc.,USA)软件进行分析。

2结果与分析

2.1不同林龄马尾松人工林地土壤酶活性变化特征

不同林龄马尾松林地土壤养分特征见表2。研究结果表明,裸地在种植马尾松6年后,土壤中蔗糖酶含量显着增加,在种植12~20年时土壤中蔗糖酶活性呈相对稳定趋势,25年后开始稳定增加,到45年达到最大,是CK1的2.55倍,但仍低于天然次生林土壤蔗糖酶活性(表3)。

裸地种植马尾松后,土壤酸性磷酸酶活性显着增加,随林龄增加呈上升趋势,到45年达到最大,是CK1的5.76倍,为天然次生林(CK2)的92.3%(表3)。

土壤过氧化氢酶的变化趋势和酸性磷酸酶类似,裸地种植马尾松后土壤过氧化氢酶活性显着增大,在种植6~25年时,保持相对稳定,32年后逐渐增加,到45年达到最大,但仍低于天然次生林(CK2)的(3.38±0.12)mL/g(表3)。栽植马尾松后,土壤脲酶活性增幅达到显着水平,随着植被种植年限的增加,土壤脲酶活性呈上升趋势,到45年达到最大,是CK1的3.88倍,仍低于天然次生林,但二者之间差异并不显着(表3)。

过氧化氢酶活性变化趋势与蔗糖酶相似,与CK1相比,不同林龄过氧化氢酶活性均显着增加,且随着林龄的增加呈上升趋势。多酚氧化酶随着马尾松种植年限的增加呈现递减趋势,到45年时达到最低值,仅占CK1的41.9%,但仍然高于天然次生林(CK2)(表3)。

2.2土壤酶活性与土壤养分相关性分析

土壤酶活性与土壤养分相关性分析表明(表4),蔗糖酶与有机碳、全氮、碱解氮、有效磷和速效钾呈极显着正相关(p<0.01),而与全磷呈显着正相关(p<0.05);酸性磷酸酶与有机碳、全磷、碱解氮和速效钾呈极显着正相关(p<0.01),而与全氮和有效磷呈显着正相关(p<0.05);过氧化氢酶与全磷呈显着正相关(p<0.05),而与其他土壤养分因子呈极显着正相关(p<0.01);脲酶与所有养分因子呈极显着正相关(p<0.01);而多酚氧化酶与其他各个指标均呈极显着负相关(p<0.01)。

2.3土壤酶指数(SEI)

由前面对土壤酶活性随林龄变化的分析可知,马尾松林龄对土壤酶活性的影响随土壤酶类型的不同而有一定的差异。为了克服单一土壤酶指标反映土壤性质变化的缺点,引入土壤酶指数作为各酶因子的综合作用的反映,从而能更加客观、全面地反映土壤酶活性在整个植被恢复过程中的变化。研究结果表明(图1),裸地种植马尾松6年后,SEI呈显着升高趋势,在种植12~20年时保持相对稳定,在种植25年后又开始稳定升高,到45年达到最大,是CK1的2.64倍,但低于天然次生林(CK2)。

3结论与讨论

3.1土壤酶活性

土壤酶能催化土壤中的生物化学反应和物质循环,其活性的高低可以反应土壤的肥力状况[10]。林龄主要是通过对土壤理化性质、生物区系和土壤水热状况的改变,从而间接影响土壤酶活性[3]。张超等[1]对黄土高原丘陵区植被恢复过程中土壤酶活性的研究表明,植被恢复过程中土壤中脲酶、蔗糖酶、过氧化氢酶、纤维素酶活性显着增加,但仍然低于天然侧柏林,而多酚氧化酶的活性随着马尾松林龄的增加而降低。

本研究结果表明,土壤多酚氧化酶活性也随林龄的增加而降低,与葛晓改等[3]、谭芳林等[11]的研究结果一致;其他酶活性随林龄的增加而呈总体上升趋势,与张超等[1]的研究结果类似。土壤蔗糖酶、脲酶、过氧化氢酶和纤维素酶活性随马尾松种植年限增加而增加,这可能是因为红壤丘陵区低质土壤在种植马尾松后,根系能够固定土壤,减少水土流失,同时大量的枯枝落叶返回土壤,增加土壤中的有机质和营养元素含量[1];同时,随植被恢复年限的增加,林下植被种类增多,能为土壤微生物提供更多的营养物质,土壤酶活性因而得到提高[12]。土壤多酚氧化酶随着马尾松林龄的增加反而降低,这可能是因为土壤无机氮利用率的提高,改变了土壤微生物的群落结构,导致了土壤多酚氧化酶活性的降低[13-14]。

3.2土壤酶活性与养分相关性

在植被恢复过程中,土壤酶在改善土壤质量中扮演着极其重要的角色,它们能直接影响土壤养分的转化和代谢过程,可以作为土壤肥力的评价指标[1-2]。Duranetal[15]认为,纤维素酶和土壤中有机质和氮含量之间有着密切的关系,土壤有机质性质决定纤维素酶活性。葛晓改等[3]对红壤丘陵区不同林龄马尾松林土壤养分和酶活性关系研究表明,马尾松土壤养分与土壤酶活性关系密切,土壤有机质含量越高,转化酶活性越高。张超等[1]对黄土丘陵区不同林龄人工林刺槐林土壤酶演变特征研究表明,土壤酶与土壤养分因子相关性较强。

本研究结果也表明,土壤酶与土壤养分因子之间存在密切关系。因此,土壤蔗糖酶、脲酶、过氧化氢酶、纤维素酶和多酚氧化酶可以作为土壤肥力和质量的生物学评价指标[16-17]。

3.3土壤酶指数

土壤酶是较为理想的土壤质量指标,在进行土壤肥力评价时,可以作为土壤肥力状况的评价指标。但利用单一酶类反映土壤酶活性变化,这存在很大的片面性和局限性,土壤酶指数(SEI)可以克服这一缺点,能更加客观、全面地反映土壤酶活性随植被恢复的演变特征。张超等[8]在对黄土高原丘陵区植被恢复的研究表明,土壤酶指数随植被种植年限的增加而增加,结果认为土壤酶指数可以作为一种土壤肥力评价指标。

本研究表明,在植被恢复过程中,土壤酶指数随马尾松林龄的增加呈上升趋势,45年龄的为裸地上的2.64倍,但仍低于天然次生林的土壤酶指数。

4参考文献

[1]张超,刘国彬,薛萐,等.黄土丘陵区不同林龄人工刺槐林土壤酶演变特征[J].林业科学,2010,46(12):23-29.

[2]王兵,刘国彬,薛萐,等.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009,17(3):282-287.

土壤的本质特征篇2

(1)海峡两岸学术界在对土壤认识上具有高度的一致性。海峡两岸土壤学界均坚持并倡导《尚书・禹贡》《管子・地员》中的土壤观,即以土色定九州和以土壤性质评价土壤生产力;在有关近代土壤学发展方面,海峡两岸学者均认同德国学者A.D.Thaer(1752-1828)的“腐殖质营养学说”、DeSaussur(1767-1828)的“无机营养学说”、J.F.Liebig(1803-1873)“矿质营养学说”,以及农业化学土壤学派和农业地质土壤学派,均将俄国学者B.B.Dokuchaev(1846-1903)创建的“土壤地理发生学”首推为现代土壤学的的始祖,并将以影响土壤形成发育的五大成土因素作为古典土壤学思想的典范。

(2)海峡两岸学术界对土壤基本属性和功能的认识是一致的。大陆学者李天杰、赵烨等2004年、2012年将“土壤作为自然资源和环境要素的集合体,研究土壤的肥力、生产能力和生态环境自净能力”;台湾土壤学界也认同:土壤科学的学术领域,已由原本以农业生产为主的研究,扩充到含括环境及生态等主题。

(3)海峡两岸土壤地理与土壤分类方面的交流有待加强。海峡两岸具有丰富的土壤资源和复杂多样的土壤类型,两岸学者均从“元素化合物土壤矿物土壤有机-无机复合体土壤结构体土层土壤剖面单个土体聚合土体土链/土壤景观土壤区域土壤圈”开展土壤地理学及分类研究,大陆学者在研究众多土壤类型形成发育规律与空间分布规律方面有特色,台湾学者在土壤诊断学及其土壤信息化研究方面则有优势,亟待相互交流和共同发展。

(4)海峡两岸在土壤污染防治技术研究方面有待加强交流合作。自20世纪中后期以来,海峡两岸先后进入社会经济持续快速发展期,由于自然环境条件、人口及其生产生活高度密集性、发展方式滞后性等原因,致使区域性生态环境破坏、水土流失和局地性土壤污染的事件逐渐增多,危害极大,亟待两岸学者通过学术交流加以应对,以确保社会经济持续发展和人群健康。台湾学者在土壤污染修复研究方面成果突出,并明确提出了重金属污染土壤的植物修复必须采用非食源性植物的思想,值得大陆学者所借鉴。大陆学者赵烨等2012年出版《土壤环境科学与工程》,在综合分析国内外特别是海峡两岸学者研究成果的基础上,提出了土壤污染修复的基本原则和基本途径,分析了运用非食源性经济植物――陆地棉萃取耕地土壤重金属的可行性,还介绍了通过能源植物柳树的短期矮林轮作(ShortRotationCoppice,SRC),修复重金属污染土壤的可行性(详见附图资料)。

(5)海峡两岸在土壤资源管护方面有待加强交流合作。土壤是生产粮食、饲料、纤维、燃料和原材料的基础性资源,土壤处于人类生态系统食物链的首端,故土壤资源及其状况不仅关乎人群的饥寒,还决定人群的健康状况,近年来国际社会日益关注土壤这个资源与环境集合体。我国台湾省早在二十世纪中后期就建立了以《土壤及地下水污染整治法》为中心的土壤污染防治体系,建立了完备的土地信息备查、分级分区管理、“双标准”等特色制度。这些经过实践检验的土壤污染整治的地方法规值得大陆学者和地方政府相关部门借鉴与发展。

土壤的本质特征篇3

关键词土壤污染生态环境治理对策

一、土壤污染的现状

随着经济和社会的快速发展,我国的土壤环境破环严重,土壤污染持续恶化。目前,全国土壤污染的超标率已经达到了16.1%,污染点的比例依次为重度污染1.1%;中度污染1.5%;轻度污染2.3%;中轻微污染11.2%,主要体现在工矿业、农业等人类生产和生活方面。我国的土壤污染类型主要表现为无机型、有机型和复合型,其中无机型污染比重较大,其污染超标点位数占到了全部污染超标点位的五分之四以上,污染问题突出。我国的土壤污染范围较广,总体来看,南方地区土壤污染程度大于北方地区,主要集中在经济发展水平较高、工业化发达的工矿业周边、城市及近郊区。土壤污染的蔓延直接触及我国的生态保护红线和耕地保护红线,造成生态环境质量逐渐下降,耕地土壤环境和生产能力严重退化。现阶段我国土壤污染以重金属污染为主,受污染耕地总面积1.5亿亩,占到了我国18亿亩耕地保护红线的8.3%,耕地质量受损严重,造成了巨大的经济损失。[1]

二、土壤污染的特征和危害

(一)土壤污染的特征

土壤污染作为我国生态环境治理的短板之一,与其他短板相比有不同的特征。土壤污染是进入土壤的污染物含量超过了土壤自身的净化能力,使土壤内部机理发生质变。第一,土壤污染的来源复杂多样,涉及大气,废水污水、化工用品、重金属、固体废弃物、农药化肥等多方面。第二,土壤污染不容易被察觉,而且形成污染的周期长,滞后性比较突出。第三,土壤污染是污染物在土壤中发生量变的过程,一般污染物进入土壤之后,流动性大大减小,因而不断沉积从量变引起土壤质变。第四,土壤污染治理困难程度大,治理周期较长,成本较高。[2]

(二)土壤污染的危害

第一,土壤污染通过大气循环,食物链的富集,水环境污染等渠道,经过各种方式进入人类和动植物体内,严重影响了人类和动植物的健康。第二,土壤污染制约了我国农业生产的发展,造成农作物减产,农产品质量下降,被间接污染的农产品又直接影响到人类的食品安全。第三,土壤污染影响人类生存空间的环境质量,目前我国发生的多起毒地事件在很大程度上已经引起了人们对土壤污染的重视。第四,土壤污染威胁到我国生态环境安全和社会经济可持续发展,山水林田湖是一个命运共同体,没有土壤环境的安全就不可能实现生态环境的安全,土壤污染严重阻碍了我国现代化建设的进程。[3]

三、土壤污染治理中存在的问题

第一,土壤污染治理法律制度缺失,现阶段我国还没有专门的治理土壤污染的政策或法规,面对目前土壤污染的严峻形势,制定土壤污染防治法及配套政策法规迫在眉睫。第二,土壤污染修复手段单一,技术不成熟,传统的修复技术难以适应复杂多变的污染状况,现行的治理手段往往比较单一且效率低,缺乏技术创新,既耗时又耗力。第三,土壤污染管理机制和防治体系不健全,我国土壤污染治理涉及的治理主体多,关系复杂,以往的土壤污染治理中经常出现部门之间相互推诿的情况,造成监管空缺,缺乏统一的管理机制。我国土壤资源种类较多,制定的土壤质量评价标准也多,如何建立一套统一协调的标准体系是今后提高土壤污染治理成效的关键。第四,土壤污染治理周期长,资金需求大。由于土壤污染的滞后性、持久性等特点,导致土壤污染治理的周期较长,加之土壤污染的隐蔽性,使社会公众对土壤污染的重视程度不够,参与治理土壤污染的积极性不高,这些原因都会增大土壤污染防治成本。[4]

四、土壤污染治理对策

(一)严格落实“土十条”,推进土壤污染治理进程

新常态下,美丽中国建设和生态文明建设都对我国的生态环境安全提出了更高的要求,国务院也了《土壤污染防治行动计划》,土壤污染治理面临巨大挑战。《土壤污染防治行动计划》的为我国土壤污染治理指明了目标和方向,因此必须坚持创新、协调、绿色、开放、共享的发展理念,严格落实“土十条”里的各项任务目标,推进土壤污染治理,改善土壤环境,保障生态环境安全,促进社会和经济的可持续发展。

(二)建立健全土壤污染综合治理的法律体系

面对当前我国土壤污染治理中的种种问题和弊端,必须尽快建立治理我国土壤污染的专门法规,健全土壤污染治理各项配套政策和措施。以立法的方式助推土壤污染治理,明确污染治理主体的职责权限,杜绝污染防治和处理应急事件的过程中相关部门互相推诿的情况。在治理土壤污染的过程中,要强化政府的作用,以政府为主导,加强土壤污染的监管和执法力度,实行污染者付费的制度。企业要严格遵照生产过程中排放“三废”的处理要求,加强农业生产过程中化肥农药等的使用和管理,鼓励私营组织、社会大众等社会资本参与治理土壤污染,形成治理土壤污染联防联治的多元化格局。

(三)实施土壤污染精准监测机制,完善土壤质量评价标准体系

土壤污染治理的首要前提是全面精准监测和普查全国的土壤污染,建立大数据形式下我国土壤污染监测的信息网络和数据平台,建立土壤监测的制度与规范体系,尽快实现我国土壤质量检测的全覆盖。要从源头开始建立土壤污染监测的长效机制,严格监督工矿业、农业,水环境、重金属行业等的污染,在此基础上,进一步完善土壤质量的评价标准体系。

(四)创新土壤污染修复技术与治理手段,降低治理土壤污染的成本

在治理土壤污染的过程中不断探索和创新土壤修复的新技术和新方式,加大土壤污染治理的科技投入,改造升级土壤污染治理的设施设备。通过借鉴国外的先进技术和模式,结合我国土壤污染的实际情况,建立多功能、专业的技术研发平台,不断优化土壤污染治理模式,完善土壤治理的多元化的投资或融资机制,从根本上降低治理土壤污染的成本。

五、结语

土壤污染治理的成效关系到我国社会和经济的可持续发展,也关系到人类的健康和生存环境的质量,同时也关系到我国的生态安全和生态文明建设的成败。加强土壤污染治理和改善土壤环境质量是我国新常态下全面建成小康社会的必然要求,因此必须结合我国实际情况,从社会发展的各个方面着手,重点发力,全面治理,为建设“美丽中国”打下稳固的基础。

(作者单位为西北师范大学社会发展与公共管理学院)

[作者简介:杨佳新(1988―),男,甘肃庆阳人,西北师范大学社会发展与公共管理学院研究生,管理学学位,研究方向:土地经济与政策。]

参考文献

[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11.

[2]陈微,魏君.土壤环境污染现状分析与对策研究[J].黑龙江科学,2014,5(7):112.

土壤的本质特征篇4

关键词:浑河冲洪积扇;土壤;硝酸盐;污染特征;土地利用类型;有机质

中图分类号:X522文献标识码:A文章编号:1672-1683(2013)04-0046-05

氮在土壤及地下水系统循环中,经过一系列的氨化作用、硝化作用及其反硝化作用等迁移转化过程,主要以硝酸盐的形式污染地下水[1]。其中最主要的过程是硝化作用:土壤中的有机氮转化为NH4+进入包气带,经黏土矿物的固化和土壤颗粒的吸附等作用后,其余部分在微生物的作用下发生硝化作用转化为NO2-、NO3-,而NO2-不稳定,也被氧化成NO3-进入地下水中[2];反硝化作用主要是指氮以气体的方式返回大气中,它对消除地下水中的硝酸盐污染有重要作用[3]。进入土壤中的氮经过土壤微生物的矿化和硝化作用转变为硝态氮,增加了土壤硝态氮负荷,影响了土壤氮循环的过程。没有被植物吸收或脱氮的硝态氮运移至深层土壤,进而淋洗到地下水中,引起地下水水质污染[4]。

近几十年来,随着工农业生产的发展,世界许多地方地表水和地下水中硝酸盐氮的含量在不断升高,农村、城市的土壤和地下水都存在着不同程度的硝酸盐污染,已经危及包气带土壤和地下水的质量安全。国内外关于土壤和地下水硝酸盐污染来源的研究较为丰富[5-8],相继研究并报道了引起硝酸盐污染的因素有施用化肥和有机肥、生活污水、垃圾与粪便的下渗水、畜舍排水、污水灌溉、污染土地、工业污染源和大气氮化合物的沉降等[7-9]。地下水硝酸盐的重要来源是土壤硝酸盐,因此研究土壤硝酸盐对于土壤和地下水污染控制与修复具有重要意义。

本文以沈阳浑河冲洪积扇土壤中硝酸盐为研究对象,开展典型区域的硝酸盐分布特征调查与分析,旨在明晰区域污染现状及污染特征。本研究对分析土壤和地下水中硝酸盐污染过程,进行土壤和地下水污染修复具有重要的科学意义。

1研究区概况

沈阳浑河冲洪积平原地处辽宁省中部,行政区域包括沈阳市市属各区及辽中县、新民市的一部分和灯塔市的北部,地理坐标为北纬41°30′-42°00′,东经123°00′-123°40′,面积3069.41km2,见图1。历史数据显示,该地区地下水硝酸盐含量普遍高出国家饮用水标准上限值,对当地饮用水安全造成了极大的威胁。

2样品采集和分析

2011年10月对研究区土壤样品进行采集。选取5个横跨浑河南北的土壤断面,均匀分布51组土壤采样点,见图1。其中1号、2号断面对每组采样点不同深度(采样深度范围是0.2~5m,每0.8m采1个样)的土壤样品进行采集,其他断面只采取表层土壤(0.2~1.5m)。每组土壤样品1kg,装入透气的布质采样袋中,将采取的新鲜土壤样品进行筛选、检测、分析。硝酸盐含量采用紫外分光光度测定,试验过程中筛选出可用的50个表层样品检测结果显示硝酸盐(以N计)含量区间为:1.41~63.53mg/kg。

3结果与讨论

3.1区域土壤硝酸盐标准值分析

由于我国《土壤环境质量标准》(GB15618-1995)中没有硝酸盐含量的标准值,这给区域硝酸盐污染评价造成了固有的困难。本次研究,基于区域土壤硝酸盐的实测数据,利用空间统计学方法——Hazen概率曲线法,初步探讨适宜于浑河冲洪积扇地区的区域土壤硝酸盐含量的标准值,为后续的污染评价和健康风险评价提供技术参考。

应用Hazen概率曲线区分不同成因数据集是地球化学数据处理中的经典方法之一[10],该方法要求数据集满足2个前提条件:(1)数据集所包含的子集数据满足对数正态分布规律;(2)数据集须由一定数目的数据构成,数据愈多,区分效果愈好。

已有研究表明,自然过程成因的元素含量分布符合对数正态分布规律[10]。浑河冲洪积扇土壤中硝酸盐的主要来源是人为因素排放(污染叠加),而排放的硝酸盐主要是在自然营力如气流、重力、降水等作用下自然加入土壤,只要样品有足够的代表性,可以认为符合对数正态分布规律。另外,为便于对研究区土壤硝酸盐含量的标准值的探讨,在应用Hazen概率曲线方法时,将研究区土壤硝酸盐标准值的量假设成完全由自然过程产生,则可以将研究区土壤中硝酸盐的标准值的量和污染叠加含量分别看作2种成因的数据集。则由一定数量、在区域上分布均匀的样品构成的研究区土壤中硝酸盐含量数据集是满足Hazen概率曲线方法要求的,依据存在于含量数据间的内在联系,应用Hazen概率曲线法对2种含量进行区分。

研究区50个土壤样品硝酸盐含量(以N计)区间为:1.41~63.53mg/kg,数据处理方法如下。

(1)将硝酸盐含量的数据按照含量值段(依据样本多少和样本间的含量差距确定,同时要保证数据集有足够的数据分组数,将每组样品数控制3个左右)进行数据分组,并统计每组中的样品数,计算其在样品总数中的频率及累积频率。

(2)根据步骤1所得的累积频率绘制Hazen概率曲线,并找出与曲线拐点对应的数据[11](含量值)。

Hazen概率曲线的做法为:Hazen概率曲线的纵坐标为均匀分格的常规数学坐标,横坐标与频率值的标准正态分布分位数有关。由于标准正态分布分位数在概率P=50%处为零,而Hazen概率曲线在概率P=0.01%时的横坐标值为零,因此横坐标值的计算公式表示为:

LP=uP-u0.01%(1)

式中:LP为Hazen概率曲线中频率P对应的横坐标值;uP为频率P对应的标准正态分布分位数;u0.01%为频率P=0.01%对应的标准正态分布分位数,其值为-3.719,其中标准正态分布分位数uP、u0.01%可由Excel软件中的统计函数NORMSINV(P)求取[12]。

(3)以步骤2求得的拐点对应的数据为含量界限,将原先的数据集分为2个子集,再分别按步骤(1)的方法处理,计算得到每个子集中每项数据在新数据组中的频率和累积频率。

(4)根据步骤3求得的累积频率在图上点出曲线,此曲线即为子集数据的累积概率曲线。

(5)根据Hazen概率曲线规则进行数据检验并求得有关参数。

设子集1的频率为f1,子集2的频率为f2,f1对应的含量为P1,f2对应的含量为P2。则当P1等于P2时,对应的f1、f2的累积样品数各自在总数据集中的累积频率之和与P1或P2(P1=P2)的交点应落在总数据集概率曲线上。f1、f2等于50%处的对应含量值(子集Hazen概率曲线横坐标值)即为子集1、子集2的均值。f1、f2等于84.1%处的对应含量值(子集Hazen概率曲线横坐标值)与各自均值的差值即为各子集的标准差。据所得均值与标准差即可求得各子集的变异系数[11],通过比较两子集的均值与变异系数即可得到可用的研究区土壤硝酸盐标准值。

通过数据处理结果与所得曲线可以得到:子集1的均值为2.58mg/kg,变异系数为0.16;子集2的均值为4.43mg/kg,变异系数为0.81。子集1相对于子集2的均值、变异系数均较小,代表含量较低且分布较均匀的数据集特征;子集2的均值相对较大、分布均匀性相对较差,代表含量较高和分布不均匀的数据集特征。结合之前的假设,可以认为子集1反映的是完全由自然过程形成的物质含量较均匀的内在特征,代表了该地区土壤中硝酸盐的标准值的量的分布特征;而子集2反映的是生产生活中人为因素的成因特征,代表了人为污染叠加形成的研究区土壤硝酸盐含量分布特征。

故研究将以2.58mg/kg作为浑河冲洪积扇土壤硝酸盐含量的标准值(以N计)。

3.2土壤硝酸盐污染评价

3.2.1平面分布特征

用筛选出有效的50个表层土壤样品的检测结果分析研究区平面空间上的土壤硝酸盐分布情况。硝酸盐浓度分布结果见图2。从图2分布结果可以看出,研究区土壤硝酸盐含量较高的区域主要位于中部白塔堡地区与西部的细河沿岸;土壤硝酸盐含量较低的区域则集中在西南部、东部以及北部;总体上,浑河以北的区域土壤中硝酸盐含量较浑河以南高。

3.2.2剖面分布特征

选取研究区1号、2号断面为研究对象,分析硝酸盐在包气带纵向剖面上的分布规律,根据用筛选出的不同深度土壤样品的检测结果分析了研究区剖面上的硝酸盐分布情况。分析结果见图3。

从分析结果来看,土壤硝酸盐含量在单个取样点上,随着垂向上埋深的增加逐渐降低,这与土壤对硝酸盐的吸附因素存在一定的关系。在空间剖面上,1号断面,越靠近浑河,

硝酸盐含量有增加的趋势,而且在1号断面上,由于细河这一沈阳市主要排污河的存在,硝酸盐浓度上升幅度较大,2号断面大致规律与1号断面相同,但整体趋势较平缓。

3.2.3区域土壤硝酸盐污染评价

区域土壤硝酸盐污染评价可以整体描述区域污染特征。本文选择单因子指数法[13]和内梅罗污染指数评价法[14]对研究区土壤硝酸盐污染进行评价,评价模型为:

PN=PI2均+PI2最大2(2)

式中:PN为内梅罗指数;PI均为平均单因子污染指数;PI最大为最大单因子污染指数。其中PI=CI/C0,这里CI表示土壤硝酸盐含量实测值;C0表示土壤中硝酸盐含量的标准值。所求的结果根据表1进行评价。

等级内梅罗污染指数污染等级ⅠPN≤0.7清洁(安全)Ⅱ0.7

根据单因子指数法,参照Hakanson[15]提出的表征土壤污染程度的分类方法及土壤样品硝酸盐单因子指数得到结果见表2。从表中可以看到处于轻度污染与中度污染区域的样品占了81.7%,而重度污染样品数只占到4.8%。

由于内梅罗污染指数法对最大单因子污染指数的放大作用,使得内梅罗污染指数法得到的总体污染水平达到重度污染。

污染程度污染指数占总样品百分比(%)轻度污染PI

3.3硝酸盐污染相关因素分析

3.3.1区域硝酸盐污染与土地利用类型关系

土壤硝酸盐污染与区域土地利用类型之间存在着一定的内在关系。从研究区域土壤硝酸盐含量分布(图2)与区域土地利用类型(图4)进行关联分析,可以看出研究区土壤硝酸盐含量较高的中部白塔堡地区周围分布着大面积的旱田,农业生产中会使用大量化肥与农药,呈面源污染特点,调查显示该区域每年施肥量仅复合肥与氮肥就达到将近5×105t;另外白塔堡处沈抚灌渠接纳了抚顺市的工业污水和城市生活污水,水质相当恶劣,对该区域造成严重的污染。土壤硝酸盐含量较低的西南部、东部以及北部主要是水田与城区,城区由于建设需要,地面需要硬化、防渗,这在一定程度上阻止了硝酸盐的入渗,另外市区也不存在农业活动等高强度的污染源;而水田氮肥随水流失多、持氮能力不高,土壤长期饱水而处于还原环境,不利于硝酸盐存在,所以水田区硝酸盐污染较轻。

此外,细河作为沈阳市主要的排污河流,长期接纳大量的工业污水和生活废水,水质污染严重,污染的河水经侧渗及早期的污水灌溉等方式进入土壤以及含水层,从而导致沿岸土壤、浅层地下水受到严重污染。浑河以北的区域土壤中硝酸盐含量较浑河以南要高,这与水田主要集中在南部有很大关系;再者浑河以北土质以砂土、亚砂土为主,土壤通透性较好有利于氮肥硝化作用形成硝酸盐,而南部地区以壤土、黏土居多,不利于硝酸盐的形成。

3.3.2硝酸盐与有机质含量之间关系

土壤有机质含量分布也是区域土壤硝酸盐污染的重要影响因素之一。将浑河冲洪积扇土壤硝酸盐含量分布图与土壤有机质含量分布(图5)进行关联分析,可以看出土壤硝酸盐的含量较高的一些区域(比如西部、中部),土壤中有机质含量也较高。

这是由于土壤中的有机质包括有机氮、有机碳、有机磷等,当氨化细菌分解C/N比大的有机物料时,由于有机碳过剩,氮素不足,会导致微生物从土壤无机氮中吸取氮合成其自身体质;分解C/N比小的有机物料时,有机碳不足,而氮素却供给有余,此时氮的矿化作用大于固持作用,导致土壤无机氮的积累和增加。这就解释了为什么土壤中硝酸盐含量与有机质分布在部分地区有一致性,而有的地区存在差异,这与有机质中有机碳与有机氮的比值大小有关。

纵向上土壤中硝酸盐含量随着垂向上埋深的增加逐渐降低,这表明了硝酸盐垂向运移过程中发生了消耗,可能存在反硝化作用,这可以通过垂向上硝酸盐与有机质的变化趋势得到证实,见图6。随着土壤硝酸盐含量的降低,土壤有机质也在减少,这是由于硝酸盐的反硝化作用消耗了有机质中有机碳,反应方程式如式(3)。

4结论

本文初步分析了沈阳冲洪积扇区域土壤硝酸盐污染分布特征,并可能对污染产生影响的部分因素进行了分析,研究结果如下。

(1)通过区域土壤硝酸盐污染监测数据分析,采用Hazen概率曲线确定浑河冲洪积扇土壤硝酸盐含量的标准值为2.58mg/kg。

(2)选择单因子指数法和内梅罗污染指数评价法对研究区土壤硝酸盐污染进行评价,评价结果显示浑河冲洪积扇土硝酸盐污染问题普遍存在,应针对性地采取防控措施。

(3)浑河冲洪积扇土壤硝酸盐空间污染分布特征与排污河位置、土地利用类型及土壤有机质的含量关系密切,对其防控措施,需要重点考虑上述相关因素。

土壤硝酸盐是地下水中硝酸盐的重要来源,其分布与地

下水硝酸盐分布之间关系密切,因此需要给予更多的关注与重视。硝酸盐的迁移转化过程,特别是反硝化作用,对污染程度有举足轻重的作用,在后续污染分析和污染过程研究中应重点考虑硝酸盐的迁移转化等过程的影响。

参考文献(References):

[1]罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质,2004,(4):65-69.

[2]陈建耀,王亚,张洪波,等.地下水硝酸盐污染研究综述[J].地理科学进展,2006,25(1):34-44.

[3]张洪,王五一,李海荣,等.地下水硝酸盐污染的研究进展[J].水资源保护,2008,24(6):7-11.

[4]赵解春,李玉中,徐春英,等.地下水硝酸盐污染来源的推断与溯源方法概述[J].中国农业通报,2010,26(18):374-378.

[5]刘咏,严小三,张婷.土壤硝酸盐污染的生物修复试验研究[J].合肥工业大学学报(自然科学版),2010,33(1l):1686-1689.

[6]InsafS,MohamedA,MohamedH,etal.AssessmentofGroundwaterContaminationbyNitrateLeachingfromIntensiveVegetableCultivationusingGeographicalInformationSystem[J].EnvironmentInternational,2004,29:1009-1017.

[7]刘宏斌,张云贵,李志宏,等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报,2005,42(3):411-418.

[8]Fernadot,WakidaaL.Non-agriculturalSourcesofGGroundwaterNitrate:aReviewandCaseStudy[J].WaterResearch.2005,39:3-16.

[9]刘光栋,吴文良.华北农业高产粮区地下水面源污染特征及环境影响研究[J].中国生态农业学报,2005,13(2):125-129.

[10]SinclairAJ.ApplicationofProbabilityGraphsinMineralExploration[M].Canada:RichmondPrintersLtd,1976.

[11]张辉.土壤重金属污染中背景含量与污染叠加含量的区分[J].环境化学,2003,22(6):605-610.

[12]林莺,李世才.水文频率曲线简捷计算和绘图技巧[J].水利水电技术,2002,33(1):52-53.

[13]张航,柴勇,叶志文.单因子指数法分析重庆清水溪非点源污染[J].科技传播,2011,(10):230-231.

[14]段飞舟,何江,高吉喜,等.污灌区农田土壤环境质量评价[J].环境科学研究,2006,(3):114-116.

[15]HakansonL.AnEcologicalRiskIndexforAquaticPollutionControl:ASedimentologicalApproach[J].WaterResearch,1980,14(8).

土壤的本质特征篇5

关键词:耕层土壤;微量元素;空间变异;Kriging插值

中图分类号:S158文献标识号:A文章编号:1001-4942(2017)07-0081-05

AbstractInthispaper,thespatialvariabilitycharacteristicsofavailablemicroelementsinfarmlandsoilsinWendengDistrictofWeihaiCitywerestudiedbymeansofgeostatisticsandArcGIS.TheresultsofstatisticalanalysisshowedthattheavailableB,Fe,Mn,CuandZnaccordedwiththelogarithmicnormaldistribution,andthecontentsoftraceelementswereallwithinthenormalrange,butthetotallevelwaslower.Thevariationcoefficientsofsoilmicroelementshadgreaterdifferencesandthedistributionwasnotbalanced.TheavailableFe,Mn,ZnandCubelongedtomoderatedegreeofvariation(10%~100%),whiletheavailableBbelongedtolowdegreeofvariation(

KeywordsPlowlayersoil;Traceelements;Spatialvariability;Kriginginterpolation

微量元素是土壤的重要M成成分,是表征土壤质量的重要因子[1],虽然在土壤中含量比较低,但对作物正常生长影响广泛,有重要探究意义。近年来,许多国内外学者对土壤微量元素进行了多方面探究,基于地统计学的内插方法能够更好地反映微量元素的空间分布特征,推动对微量元素空间异质性研究探讨,比如徐尚平等[2]用克里格法分析了内蒙地区土壤微量元素的空间结构,发现母质和以土类为代表的表生地球化学作用是影响分布模式的主要因素。张庆利等[3]对城郊蔬菜基地、赵彦峰等[4]对城乡交错区分析耕层土壤有效微量元素空间分布的影响因素认为,有效锌和有效铜的含量主要受人类活动影响。农业生产中施用的氮、磷肥等将导致土壤-植物系统中微量营养元素的失衡,从而引起微量元素的缺乏[5]。

本文在前人对文登区研究的基础上,结合文登区土地类型、地形、利用现状等因素分析了土壤有效态微量元素的空间分布规律,有效弥补了文登区土壤养分分析的不足,以更全面直观地了解文登区微量元素分布现状,有助于精准施肥,因地制宜,对农业生产有重要指导意义。

1材料与方法

1.1研究区概况

文登位于山东半岛东部,在北纬36°52′~37°23′、东经121°43′~122°19′之间。西阻于昆嵛山,与烟台市牟平区和乳山市相接,北连威海市环翠区,东邻荣成市,南濒黄海。总面积1645km2,海岸线155.88km。全市土地总面积161461.77hm2,农用地占土地总面积的74.90%。文登位于新华夏系第二隆起的东部,总的地质特点是:地质简单,岩浆岩分布广泛,构造不太发育。全境两侧高,中间低,北部高,南部低,像一个簸箕,口向南,伸向黄海。境内地形复杂,丘陵起伏,沟壑纵横,平原沿河谷两岸及滨海地区呈带状展布。山地占总面积19%,丘陵占58.4%,平原占22.6%。文登地处北温带,属大陆性季风气候,四季分明。降水分布不均,夏季较为集中,春秋季降水偏少,常发生干旱。根据全区第二次土壤普查资料,全区土壤有6个土类,10个亚类,14个土属,97个土种,179个变种。棕壤是全区主要土壤类型,分布于各地,可利用土地面积13.15×104hm2,占可利用总面积的83.59%。

1.2研究方法

1.2.1样品采集与分析2011年9月(作物收割后)进行耕层土壤(0~20cm)的取样,以威海市文登区土地利用现状图为基础图件,结合研究区实地情况,根据均匀布点原则并进行实地采样,采取多点混合和四分法采集0~20cm耕作层土壤,用手持GPS定位采样点,共布设2387个土壤采样点,经筛选选取1086个采样点(图1)。

土壤有效铁的测定采用邻二氮菲分光光度法[6];有效锌、锰的测定采用DTPA浸提-原子吸收分光光度法[7];土壤有效硼通常是指以沸水提取的硼,用甲亚胺比色法测定;有效铜采用火焰原子吸收分光光度法测定。

1.2.2数据处理与统计分析利用SPSS19.0对数据进行K-S检验和一般描述性统计,剔除原始数据中的异常值后,如不符合正态分布,需进行对数转换。利用GS+7.0和ArcGIS10.0软件互相辅助对数据进行半方差分析和拟合,依据变异函数理论模型参数,选取最优拟合方法,在地统计模块中进行普通Kriging插值,生成微量元素空间变异分布图。

半变异函数的理论模型可用来分析土壤理化性质空间变异的随机性和结构性,它是地统计学特有的工具和分析的基础[8]。变异函数是研究空间变异的关键函数[9],该函数为:

r(h)=12δ2[Z(x+h)-Z(x)]。

式中:h―样本间距;Z(x)―在位置x处的数值;Z(x+h)―在距离x+h处的数值[10]。

实际工作中区域化变量的变异性往往很复杂,它可能在不同的方向上呈现不同的变异性,或者在同一方向上包含着不同尺度的多层次的变异性。

2结果与分析

2.1土壤有效态微量元素的统计分析特征

土壤有效态微量元素指标的描述统计结果见表1。按照全国第二次土壤普查养分分级标准,文登区土壤有效态微量元素含量差异较大,有效Fe、Mn、Cu、Zn、B含量的变化范围分别为2.02~9.32、1.63~8.52、0.03~0.94、0.01~0.72、0.10~0.26mg/kg,其平均含量分e为4.26、4.35、0.31、0.22、0.24mg/kg,其中有效Mn的平均含量最高,有效Zn的平均含量最低。按照山东省土壤有效态微量元素分级标准,从平均含量来看,有效态Fe处于低等水平(2.5~4.5mg/kg),有效Mn处于低等水平(1~5mg/kg),有效Cu处于中等水平(0.2~1.0mg/kg),有效Zn处于低等水平(

2.2土壤有效态微量元素空间异质性特征分析

块金值也叫块金方差,反映的是最小抽样尺度以下变量的变异性及测量误差,表示随机部分的空间异质性。块金值与基台值的比值为空间相关度,表示可度量空间自相关的变异所占的比例,表明系统变量的空间相关性的程度。如果比值75%说明空间相关性很弱。如表2所示,各个微量元素块金值/基台值均小于25%,说明具有强烈的空间相关性,说明在该研究区内,受人为因素(耕作、施肥、种植制度等)的影响较小。由表2可知,土壤微量元素的半方差函数拟合效果最优,有效Fe、Mn、Cu、Zn用指数模型拟合效果最优,有效B用球状模型拟合效果最优。

2.3土壤有效态微量元素含量的空间局部插值分析

空间插值分布图可以更直观地体现土壤微量元素含量的变化,为便于全面、直观地揭示土壤微量元素的空间分布规律,在ArcGIS10.0中,对各个微量元素采用普通Kriging插值(图2)。中部低山丘陵区有效Fe含量较高,在6.0mg/kg以上,中南部边界地带有效Fe含量最低,且有区域性特征,基本在小观镇范围内,土地利用类型是菜地和果园。有效Mn的分布特征与有效Fe有一定的相似性,环绕在铁元素密集区周围。有效Cu在北部山区、中北部圣经山以及中南部低山丘陵一带较为集中。有效Zn和有效B地域差异不明显,分布较为细碎化,说明受人类活动、地形和土地利用类型影响比较少。张忠启等[12]研究了江苏省沛县土壤全氮空间变异性,土壤类型对土壤全氮含量有着重要影响,成土母质是影响空间分布的重要因素。微量元素空间分布较为复杂,产生这种现象的原因主要与研究区的成土母质有关,成土母质是影响微量元素含量和空间分布的首要因素[13],文登区成土母质大部分为酸性岩风化物,土壤代换量平均在6.5cmol/kg土,保肥能力弱。

3讨论

通过对文登区土壤有效态微量元素的分析,应从以下两个方面加强研究:

(1)全面统计微量元素的空间信息,利用ArcGIS空间分析功能,结合土地利用现状、类型、地形、气候等相关数据,整合土壤有机质与氮磷钾大量元素信息,进行土壤养分综合分析,提高插值精度,为进一步开展文登区土壤监察与改良提供理论依据。

(2)文登区土壤有效态微量元素含量均在正常范围之内,总体偏低,施肥是土壤养分补给的重要来源,在施肥过程中土壤微量元素也会产生动态变化,应根据不同乡镇农业农村经济发展阶段和科学施肥水平,因地制宜加快配方肥推广,绿色防控,逐步淘汰高毒、高残留化学农药应用,规范化、标准化使用化学投入品,不断改良土壤,使土壤养分达到生态平衡,改善缺乏现状,助力农业生产。

4结论

本研究运用经典统计学和地统计学的方法,借助GS+软件辅助调参,运用克里格内插的方法分析了威海市文登区耕层土壤微量元素空间变异特征,主要结论如下:

(1)统计分析结果表明,有效B、Fe、Mn、Cu和Zn符合对数正态分布,土壤中有效态微量元素含量均在正常范之内,总体偏低,有效Cu处于中等水平,其他元素均处在低等水平,处于普遍缺乏状态。土壤微量元素的变异系数差异较大,分配不均衡,有效Fe、Mn、Zn、Cu均属中等变异程度(10%~100%),而有效B属低等变异程度(

(2)利用普通Kriging插值方法,在半变异函数拟合模型基础上,分析了土壤有效态微量元素的地统计特征,文登区土壤微量元素含量空间变异具有各向异性,块金值/基台值均小于25%,具有强烈的空间相关性,说明在该研究区内,受人为因素的影响较小。有效态元素Fe、Cu、Mn和Zn用指数模型拟合较好,有效B用球状模型拟合较好。

(3)通过制作该区域土壤微量元素含量的空间局部差值图,分析了其空间分布规律。中部低山丘陵区有效Fe含量较高,中南部边界地带含量最低,且有区域性特征,有效Mn的分布特征与有效Fe有一定的相似性,有效Cu在北部山区、中北部圣经山以及中南部低山丘陵一带较为集中,有效Zn、B地域差异不明显,分布较为细碎化。

参考文献:

[1]王学军,邓宝山,张泽浦.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报,1997,17(4):412-416.

[2]徐尚平,陶澍,徐福留,等.内蒙土壤微量元素含量的空间结构特征[J].地理学报,2000,55(3):337-345.

[3]张庆利,史学正,黄标,等.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤,2005,37(1):41-47.

[4]赵彦峰,史学正,黄标,等.工业型城乡交错区农业土壤Zn的空间分异及其影响因子探讨――以无锡市为例[J].土壤,2006,38(1):29-35.

[5]洪松,郑泽厚,陈俊生.湖北省黄棕壤若干微量元素环境地球化学特征[J].土壤学报,2001,38(1):89-95.

[6]马鄂超.第三讲土壤养分测定(二)[J].新疆农垦科技,2006(1):59-60.

[7]钟育均.邻二氮菲分光光度法测定土壤中的铁[J].广东化工,2010,37(3):184-187.

[8]刘爱丽,王培法,丁园圆.地统计学概论[M].北京:科学出版社,2012:5.

[9]徐国策,李占斌,,等.丹江中游典型小流域土壤总氮的空间分布[J].地理学报,2012,67(11):1547-1555.

[10]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002:112.

[11]国家环境保护局.GB15618―1995土壤环境质量标准[S].北京:中国标准出版社,1995.

土壤的本质特征篇6

关键词:城市土壤;磁化率;环境意义;影响机制

中图分类号:X833文献标识码:ADOI编码:10.3969/j.issn.1006-6500.2014.03.007

磁化率是环境磁学研究中的一个重要的磁参数[1],土壤磁化率是土壤在外磁场中受感应产生的磁化强度和外加磁场强度的比值,土壤的磁化率反应土壤中磁性矿物的数量[2]。频率磁化率是用于区分土壤中存在超顺磁性颗粒(d

随着城市化进程的日益加快,人们亦不断提高对城市土壤和城市环境质量对人类身体健康影响的关注度。通过分析城市土壤的磁性特征,可以揭示城市环境问题的内涵以及人类活动对环境的影响[3]。Thompson等[4]发现城镇和工业区附近的土壤与未受到污染的土壤相比有较高的磁化率。同时,有研究表明[5-8],冶金等工业排放的飞灰中含有磁性矿物,可引起表层土壤磁化率升高,且磁化率值随着离源区距离的增加而减小。

本研究通过对乌鲁木齐市土壤磁化率的分布特征分析,探讨乌鲁木齐城市土壤污染的影响机制。

1材料和方法

1.1研究区概况

位于自治区中北部,天山中段北麓、准噶尔盆地南缘。由于位处高纬度地带,所以冬季严寒漫长,需燃煤取暖,由此乌鲁木齐城市周边分布着多个煤矿企业,另外作为全疆的经济中心,乌鲁木齐工矿企业也是相当的多,如水泥厂、铝厂、化纤厂、污水处理厂、生物制药厂等污染型企业多分布在城市周边。这些污染型企业的存在和发展对城市环境造成了一定的破坏并日益影响到乌鲁木齐城市居民的身体健康。近年来,乌鲁木齐逐步进行煤改气工程,以改善冬季乌鲁木齐的环境状况,虽然取得了初步的成效,但是在彻底改善城市环境,实现“绿色计划”,创建全国园林城市方面还存在很大的挑战。

1.2样品采集

1.3样品的处理

所测定的土壤低频磁化率就是土壤磁化率,它表示土壤中磁性颗粒物的含量以及土壤能够被磁化的性质,高频磁化率是用于进行频率磁化率测定计算过程的一个辅数据。

2结果与分析

2.1土壤磁化率值

土壤磁化率仪器测定出的45个土壤样品的低频以及高频数据,以及经过频率磁化率计算公式计算出的45个样本的频率磁化率,如表1所示。可以看出,乌鲁木齐城市土壤磁化率测定中,大部分土样测定的磁化率数据都处在中间值和低值的区间内,但也有个别土样出现高值和极高值。

2.2土壤磁化率的统计分析

(2)乌鲁木齐城市土壤的低频磁化率与频率磁化率之间具有负相关关系。即低频磁化率高的样本,其频率磁化率低,低频磁化率低的样本,其频率磁化率高。而且低频磁化率和频率磁化率的极值之间的差距悬殊。这反映了乌鲁木齐不同的土地利用类型下土壤污染的差异较大。

(3)乌鲁木齐城市表层土壤的磁化性质的不同是由两方面原因造成的:一是由于形成土壤的母质基岩的主要成分不同,导致了土壤的磁化率不同,二是由于现在城市的工业化发展过程中产生的污染物质在土壤表层的积聚,致使土壤的磁化性质发生改变。但在两种因素中,人类活动是造成乌鲁木齐城市表层土壤的磁化率显著差异的主要原因。

参考文献:

[1]余涛,杨忠芳.磁化率对城市重金属污染的指示性研究——以沈阳新城子区为例[J].现代地质,2008,22(6):1034-1040.

[2]卢绬,龚子同.城市土壤磁化率特征及其环境意义[J].广州:华南农业大学学报,2001,22(4):26-29.

[3]曲赞.用于环境研究的磁性参数介绍[J].地质科技情报,1994,13(2):98-104.

[4]ThompsonR,OldfieldF.Environmentmagnetism[M].London:Allen&Unwin,1986.

[5]王雪松,秦勇.城市环境中磁学响应的研究进展[J].中国环境监测,2009,19(6):62-64.

[6]张普纲,樊行昭.磁性参数的环境指示意义[J].大连理工大学学报,2003,34(4):201-205.

[7]刘振东,杨凌.城市道路尘埃的磁性特征与环境意义[J].地球科技情报,2005,24(3):93-98.

[8]闫海涛,胡守云.磁学方法在环境污染研究中的应用[J].地球科学进展,2004,19(2):222-236.

[9]邓成龙,袁宝印.环境磁学某些研究进展评述[J].海洋地质与第四季地质,2004,20(2):93-101.

更多范文

热门推荐