计算机学科主要研究方向(6篇)
时间:2024-12-22
时间:2024-12-22
关键词:信息科学技术;教学改革;教学理念;计算机学科
北大信息科学技术学院针对北大学生的特点,把培养目标定位在培养具有国际视野的领域领军人才上,具体讲就是培养具有原创能力的研究型人才、具有集成能力的工程型人才和具有组织能力的管理型人才。为了实现上述培养目标,学院秉承了北京大学“加强基础,淡化专业,因材施教,分流培养”的理念,在教学改革中强调了“拓宽夯实知识基础,培养锻炼综合能力”的基本原则,关注了如下三方面的工作:一是结构化的教学体系框架设计:构筑能够灵活调整课程安排、教学内容和教学形式的教学体系框架,适应本学科发展迅速和与产业结合紧密的特点。二是宽广和扎实结合的基础课程设置:依托北大的人文学科优势培养学生的人文基础,依托北大的理科优势夯实数学物理基础。依托北大计算机学科的历史积淀强化算法和软件编程基础,依托学院的电子科学技术学科加强硬件基础。三是面向能力培养的学习环境建设:营造敢于表达、质疑、挑战、犯错和承担的学术氛围,建设面向基础知识和动手能力的实验教学课程体系,建立结合真实科研任务的、与研究生同等条件的科研实习制度。
本文将对这些前期教改实践做一个简要总结。
一、结构化的教学体系框架设计
信息学院目前有四个本科生专业,分别为计算机科学与技术、电子学、微电子学和智能科学。其中前三个是成立学院时就有的专业,而第四个是学院成立后设立的全国第一个智能科学专业。在原有的教学体系中,每个专业的课程自成体系。一方面每个专业的学生知识面较窄,不利于学生适应快速发展的社会需求;另一方面有些课程在不同专业重复设置,浪费教学资源。学院成立后我们制定了新的本科生教学计划,打通一年级四个专业方向课程,并在2005年、2007年两次进行了修订。我们提出了重视基础,分阶段、多层次的模块式教学计划,把课程分成三个阶段安排(一年级、二年级和高年级三个阶段),除学校公共必修课外,把课程分成四个层级:学院公共必修课、专业必修课、专业核心选修课、任选课。
为了加强基础、淡化专业,一年级统一安排数学、物理、计算机和电路方面的基础课(如数学分析、高等代数、电磁学、力学、计算概论、程序设计实习、数据结构与算法、微电子与电路基础等),使得不同专业的同学在软硬件方面都得到加强。2007年的修订计划,更加体现出北京大学重基础重创新思维的培养特色。以学生为本,课程设置将数学、物理、计算机等方面的基础课,分别开设AB两级不同深度要求的课程。打造研究型、综合型(宽口径型)、应用型培养模式,以适应兴趣和特长不同的学生。另一方面,在一年级第一学期开设“信息科学技术概论”,请学院里资深的专家教授向学生讲解信息科学技术领域各学科的发展和最新成果,各专业的知名教授学者(包括院士、长江学者等)都亲自给学生授课,开阔了学生的视野,激发了学生的学习兴趣。二年级分为两个大方向,计算机和智能科学的方向以及电子和微电子的方向。到了高年级,则根据不同的专业和学生志向安排更具选择性的专业课程。
在学院本科教学框架体系下,计算机学科的本科教学体系由五大基础(数学物理基础、程序设计基础、专业数学基础、硬件基础、系统软件基础)、三大系列专业课(计算机理论、计算机核心技术、计算机应用和新技术)和本科生科研实习组成。在整个课程体系中,程序设计基础、硬件基础、系统软件基础和全部的计算机核心技术、应用及新技术课程中都有大量的实验教学内容。
二、关于计算机学科知识基础的讨论及相应课程的设置
随着计算机学科的内涵和外延的不断丰富,与计算机学科相关的领域不断增加,各种理论、技术、应用层出不穷。我们不可能在本科四年的时间里向学生传授所有与计算机学科相关的知识,因而要仔细讨论清楚到底哪些内容是相对更基础的是必须掌握的,哪些实验对训练学生基本动手能力更为有效,什么样的教学模式对学生未来的发展更为有利。回答上述问题需要考虑以下几个因素;(1)计算机学科未来发展趋势预测及国家发展对计算机人才的需求。(2)计算机学科的知识体系及各部分之间的拓扑关系。(3)学生的特点和兴趣。(4)学生培养的目标和定位。(5)现有师资力量和对未来师资力量发展的计划。如果前四点决定了我们需要培养怎样的人才以及如何培养,那么第五点将决定我们究竟能否做到我们想要做的。
北京大学信息学院由计算机科学与技术、电子学、微电子学和智能科学系组成,拥有开设各类课程的硬件环境和师资力量。学院的成立为调整每个专业方向的课程设置提供的可能性。在学院的框架下,由知名学者联合为全院新生开设了信息科学技术概论。计算机专业的本科课程在硬件、程序设计基础和智能方面都有所加强,而通过和数学学院、物理学院的联合,为学生提供了多种的数学物理基础组合课程。总体来说,北大信息学院计算机专业方向的课程体系包括数学基础(有A(数学分析+高等代数)、B(高等数学+线性代数)两种难度选择)、专业数学(集合论、代数结构、数理逻辑、概率统计)、物理基础(有ABC三种难度可供选择)、程序设计基础(计算概论、程序设计实习、数据结构与算法、数据结构与算法实习、算法分析与设计)、硬件基础(微电子与电路基础、基础电路实验、数字逻辑、数字逻辑实习、微机原理、微机原理实习、计算机组织与体系结构、体系实习(待建设)、系统软件基础(操作系统、操作系统实习、编译原理、编译实习、计算机网络、计算机网络实习)、三个方向的系列选修专业课程和科研实习(一年以上)与毕业论文(全院范围评选十佳和优秀论文)。
北大信息学院计算机专业课程体系中比较有特色的内容是:(1)数学和理论课程丰富(由于联合了数学学院和智能科学系)。(2)大部分基础课程的实习内容单独设课,时间为一个学期,要求分组完成比较大的项目,对学生充分理解理论课程的内容,提高动手实践能力很有帮助。(3)与本系教师研究方向相关的课程内容丰富且课程门数呈上升趋势。
三、加强基础实验教学建设,重视实践能力培养
结合本院学生80%继续深造的具体情况,我们制定了“能力培养为纲、知识传授为目;基础知识为体、专门技术为用;避免急功近利、强调后发优势”的教学指导方针。具体来讲就是在打好数学物理基础的同时,强化实验教学环节,尤其是设计和创新型实验教学的环节,使学生养成探究各种知识理论的来源和适用范围的习惯。
在提高实验教学质量方面,学院也作了多种尝试,其中最典型的是在提高学生程序设计和实现能力方面,自主研发了“百练”程序在线评测系统。该系统在基础实验教学中被广泛应用,并辐射至全国全球。“百练”程序在线评测系统是一个基于万维网的服务系统,全天24小时向全球提供服务。用户在练习某个题目时,只需要将源程序通过网页提交,在几秒钟之内就会得到正确与否的回答。“百练”对于程序的评判是极为严格的,学生的程序根据系统给出的输入数据进行计算并输出结果。“百练”在服务器端编译、运行被提交的程序,取得输出结果和标准答案对比,必须一个字节都不差程序才能算通过。这对于培养严谨、周密的程序设计作风极为有效,学生必须考虑到每一个细节和特殊边界条件,而不是大体上正确就能通过。传统的人工评判是难以做到这一点的。使用“百练”系统进行程序设计类相关课程教学时,一方面可以在网上布置作业题目,学生随时完成作业、提交并获得评测结果,减轻了教员批改作业的负担同时增强了批改的准确性;另一方面教员亦可在网上监督学生作业完成情况,并就存在的问题进行解答。网上实时的编程考试,更能考察出学生的动手能力,同时有助于威慑和杜绝作弊现象。五年的教学实践表明,“百练”系统在提高学生程序设计能力和编程的熟练和准确性方面起到了突出的作用。“在“百练”上做题对你创造力和思维能力都是种挑战,有助于戒骄戒躁,任何一个字节都要处理得当,否则就会出错。这不但可以使你懂得理论,而且使你真正开始写自己的程序。”这是06级一位本科生的最深感受。四、参与科研项目,培养研究和创新能力
信息科学技术学院建立了一整套本科生科研实习制度,将科研实习与本科生课程训练并列为本科生培养的两个组成部分。在一、二年级学生中遴选一些基础好的学生通过“校长基金”、“若政基金”、“教育部大学生科研实践计划”、教师自筹等项目进入课题组参与科研项目的研究。三年级时,各个研究所实验室制度化招收实习本科生,包括组织报名、考核、录取、基础培训、规章制度培训、前沿介绍、与学生讨论确定选题,之后进入与研究生同样的培养模式进行培养。四年级时,所有没进入实验室实习的学生通过双向选择进入实验室完成本科论文。
“在和高年级学生的协作中,我们学到的不仅是知识,而且还有一种信念,大家为同一个项目互相合作,以我们自己的方式鼓励自己,如果我们能保持这种心态,我们一定能取得更大的成就。”已毕业的一位03级本科生认为,本科参加院里的科研实习,除了培养动手能力、科研创新能力之外,更重要的是培养了她的团队协作能力。
让本科生从一年级开始就陆续进入实验室,跟随导师和硕士生博士生参与真实课题研究。这样做的好处是:(1)让学生提前感受研究的文化氛围,培养科学素养。(2)通过科研,充分认识数理基础的重要性,积极主动奠定坚实基础。(3)导师和学生互相沟通了解,提高研究生生源质量。(4)提前培养专业基础知识,将研究生培养延伸至本科,有助于出高质量的研究成果。
信息科学技术学院有1个教学研究所和11个科研研究所,其中有2个国家重点实验室、6个部委级重点实验室,承担了国家863、973、自然科学基金项目100多个,每年纵向科研经费6000多万,为本科生就读期间直接参加科研工作提供了条件。近几年在一些研究基金的资助下很多本科生在研究所里受到很好的训练,参与完成了重大科研课题,发表了高水平的论文。
五、科研团队建设系列课程,促进科研成果向教学转化
计算机系的教师是以研究所为单位组织的。每个研究所的教师有一个共同的大的研究方向。计算机系本科生课程分为基础课和专业课两个层面,针对这两种课程,教师有两种组织方式,一方面从各个研究所抽调有经验的老教师和年富力强的中青年教师组织成基础课教学团队,负责全院基础课程的建设,例如计算概论教学团队、程序设计实习教学团队、数据结构与算法教学团队:另一方面,教师按研究方向组织成系列专业课程授课团队,负责建设各个研究方向的系列课程,例如数据库方向教学团队、计算机网络方向教学团队、软件工程方向教学团队、计算机理论方向教学团队、人机交互方向教学团队、人工智能方向教学团队、数字媒体方向教学团队等等。每个研究方向的教学团队负责建设一个方向的系列课程,保持课程内容与学科发展的同步,并设计使学生在该领域掌握相应技术基础的递进式系列课程。这样做的好处是:(1)教师在自己的研究方向上开课,可以随时将研究进展注入课程内容,可以讲得更生动。(2)教师可在课上物色对本方向感兴趣的学生,使他们加入到自己的研究团队。(3)不同研究方向的系列课程在给学生提供更多选择的同时,也形成了适度的竞争,如果没有学生选修自己研究方向的课程,一定程度上会影响本方向的研究生生源质量。(4)基础课的教学团队教师来自不同的研究方向,在基础课程内容的设计上可以更好地兼顾不同方向学生对基础的要求,因此可以建设内容更加合理的基础课程内容。
以科研团队建设系列专业课程的模式促进了科研成果向教学的转化。例如,在中国教育网格研究项目支持下,学院自主研发的大学课程在线系统成为中国互联网上最大的大学教育资源之一。“大学课程在线系统”目前拥有4970个大学课程视频,约84000个小时每天超过1000个不同的用户IP地址访问,36所大学加入,成为中国互联网上最大的教学资源之一。
关键词:大学计算机课程;计算机基础教育;改革;计算思维
文章编号:1672-591-3(2013)07-0017-04
中图分类号:G642
1背景与主题
2012年8月8日至9日“第八届全国高等学校计算机教育改革与发展高峰论坛(2012)暨大学/高职计算机基础教育高峰论坛”(以下简称“论坛”)在云南省昆明市隆重召开。论坛是在全国高等学校计算机基础教育研究会等八个学术组织共同主办的“第二届全国高等院校计算机核心技能与信息素养大赛”(以下简称“大赛”)之后,为了推进大学计算机教育改革,促进竞赛与教学相结合而举办的。论坛的主办单位与大赛的主办单位基本一致,有教育部高等学校计算机基础课程教学指导委员会、教育部高等学校计算机基础课程教学指导委员会理工分委会、教育部高等学校计算机科学与技术教学指导委员会计算机科学与技术专业教学指导分委会、全国高等院校计算机基础教育研究会、全国高等学校计算机教育研究会、中国计算机学会教育专业委员会、《计算机教育》杂志社等。中国铁道出版社承办了本届论坛。谭浩强、冯博琴、蒋宗礼、高林等知名计算机教育专家以及来自台湾师范大学的戴建云教授出席了会议并作学术报告,来自全国180余所高校共计200多人参加了会议。
论坛以“新时期下计算机教育的改革与发展”为主题,重点对非计算机专业大学计算机课程改革开展了研讨,围绕当前的热点“计算思维”及其作为大学计算机课程改革核心的问题,专家学者呈现了各自的学术观点,参会代表表达了不同的感想与认识。
围绕主题,共有13位专家作了大会报告。分别是冯博琴教授的《计算思维驱动的大学计算机课程改革思考和实践》、谭浩强教授的《研究计算思维,坚持面向应用,锐意改革创新》、高林教授的《面向应用型人才培养的新一轮大学计算机教育教学改革——理念与解决方案》、吴文虎教授的《“程序设计基础”课程改革十年的再思考》、卢湘鸿教授的《大学计算机课程与应用型、实用型、创新型人才培养——北京大学计算机改革介绍》、戴建云教授的《计算思维与信息决策思考力在台湾的实践经验》、王挺教授的《课程教学中的计算思维培养初探》、管会生教授《计算思维:从中国古算具到图灵机——纪念图灵诞辰100周年》、蒋宗礼教授的《深化内涵,以提高计算机类专业办学水平》、温涛教授《TPCARES-CDIO教育教学改革的探讨与实践》、袁玫教授的《核心技能、信息素养与计算机基础课程改革》、侯冬梅教授的《切实提高大学生的计算机应用能力——从IC3的实践看大学计算机教育改革》等。论坛中还举办了两个专题沙龙,分别就“应用型院校非计算机专业大学计算机课程改革”与“国际标准认证IC3的应用”进行了深入探讨,参会代表普遍认为:以计算思维为主线的新一轮大学计算机课程改革,更多是针对研究型大学提出的,而对于应用型院校,还需要积极研究计算思维的内涵,研究计算思维在应用型人才培养中的作用,从理论和实践层面处理好计算思维与应用能力的关系;国际标准认证IC3的应用,在提高大学生计算机应用能力上开辟了一条有效的新途径,值得推广;对于以培养高技能专门人才为主的高职教育中的大学计算机教育,也同样面临诸多类似问题,需要及时启动高职院校大学计算机教育改革进程,以适应新一代信息技术应用的需求。
2共识与争鸣
论坛对于非计算机专业大学计算机课程改革与“计算思维”培养的问题进行了多视角研讨,有共识,也有不同观点的争鸣。
2.14点共识
1)大学计算机教育急需改革。
随着计算机技术的迅速发展,特别是新一代信息技术的发展,计算机应用领域不断扩大,社会对计算机应用能力要求在提高,所以高校非计算机专业对大学计算机教育教学的要求也在提高;中小学的信息技术教学不断加强,使得大学入学新生的计算机应用能力不断提升。这两方面的变化对本科/高职院校非计算机专业大学计算机课程提出了挑战:一方面,很多学生已不同程度地掌握了作为智能工具的计算机的应用;另一方面,大学计算机课程的教学内容滞后于信息技术的发展,未能很好解决专业服务的问题,对学生计算机应用能力的培养还不能满足工作需要。这些问题使学生对大学计算机课程学习兴趣不高,教学秩序难于控制。针对这种情况,一些学校开始削减大学计算机课程学时,甚至计划取消大学计算机课程,这也造成大学计算机课程教师与专业教师之间的争议。与会专家、教师都认识到推动非计算机专业大学计算机教育教学改革已迫在眉睫。
2)大学计算机教育教学改革需要分类设计。
必须重新规划大学计算机课程体系,重新设计大学计算机课程内容,改革必须分类分层次进行,不能搞一刀切。教指委有关专家指出“不需要也不可能将计算思维的所有概念全部灌输给所有的学生”“应用领域不同,使用计算机完成任务的要求、方法和程度不同,对计算机应用能力要求也就不会相同,需要进行思维活动的深浅、参与的程度也有所不同,导致大学计算机教学必然多样化,要分类分层对待”。教育部教指委文件已提出将大学本科计算机课程改革方案按学科专业门类分为6类设计。因为经济社会对人才的需求是分类型的,大众化阶段的高等教育也是分类发展的,所以非计算机专业大学计算机课程改革的分类进行,不仅要按学科专业分类,而且要按教育类型分类。首先要根据本科、专科(高职)不同培养层次划分为本科的大学计算机课程和专科(高职)的大学计算机课程;在本科层次中又分为研究型和应用型人才,进而再按理科、工科、文科等学科专业门类需要,综合考虑进行课程体系的分类设计与实施。
3)在大学计算机教育中引入计算思维具有前瞻性。
科学思维是人类智能的重要体现,是自然科学和社会科学发展提升到哲学层面的结果,进而又反作用于科学技术和人类社会的发展。自古以来,数学的发展形成了逻辑思维;物理学生成的实验思维成为实证思维的重要组成部分;系统论等提升了人们的系统思维能力。随着计算科学的发展以及全社会计算机应用水平的提高,近年来计算思维的概念被明确提出并在不断地被清晰化和系统化。计算思维是对传统计算机应用能力体系的提升,是计算机科学新发展的产物,对大学计算机课程的教学内容提出了新的要求。随着对计算思维的深入研究,计算思维有可能发展成为新的科学思维方式,指导各类专业工作,成为分析解决问题的思维方法支持。因此,会议讨论认为:在非计算机专业大学计算机课程中引入计算思维具有前瞻性,很有必要。
4)对计算思维还需要深入研究。
目前,计算思维成为计算机教育讨论的新热点,由计算机界提出,以计算学科为基础,其目标是构建形成普适性计算思维理论体系,已引起广大学者与高校教师的高度关注。目前计算思维的定义仍限于计算学科化的概念术语解释,未形成完整的理论基础和方法体系,在非计算机专业计算机基础课程改革中引入计算思维能力的培养,在认识上、教学上还存在着不少的困惑与争论。
有专家认为计算思维在“教学”层面上没有形成一个清晰的表达体系,其内涵、外延还没有得到清楚的描述……计算思维为什么可以成为当前计算机基础课程教学改革的核心,对此应当进行深入探讨。有专家认为计算思维目前还仅在计算机界内部讨论,并没有研究透彻,对计算思维诸多要素的提取还局限于计算学科的专业术语,难于被广大公众所理解和接受,成为普适性思维方式,有待提升到哲学层面。有专家认为计算思维目前的讨论只是初步的,并不成熟,应作为学术问题展开研讨,进行交流,百家争鸣,集思广益,而不要在不求甚解的情况下,急于贯彻,应该深入调查研究,充分听取各种意见,取得共识。
尽管与会专家、教师从各自不同视角发表了对计算思维的看法,但对于“将计算思维从计算学科提升成一种科学思维方式,还需要加强深入研究”是大家的共同认识。
2.2两点争鸣
“论坛”对于非计算机专业大学计算机教育改革与计算思维培养问题尚存在一些不同观点的争鸣和讨论,主要反映在以下两个方面:
1)计算思维能力与信息应用能力的关系。
“论坛”研讨中对计算思维在非计算机专业本科/高职计算机基础课程以及计算机应用中定位的讨论,其实质是在大学非计算机专业的计算机教育课程改革中如何处理培养计算思维能力与信息应用能力的关系问题。
有专家认为要把计算思维能力的培养作为我国高水平研究型大学计算机基础教学的核心任务,应加强以计算思维能力培养为核心的计算机基础教学课程体系和教学内容的研究,在计算思维指导下进行大学计算机课程改革与建设。在这一观念指导下,专家结合自身实践探索提出了理科、工科、文科类非计算机专业以计算思维能力为核心的大学计算机课程体系方案,介绍了教学中突出培养学生计算思维能力的经验以及尚存的困惑。
有专家认为对于应用型人才培养必须注意正确处理培养计算思维与面向应用的关系,培养计算思维不是目的,而是为了更好地应用计算技术,推动社会各领域的发展与提高,应用型大学非计算机专业计算机教育的本质永远是计算机应用的教育,要以应用能力为导向,使学生具备在各个领域应用计算机的能力。
有专家认为新形势下信息应用能力的内涵已发生深刻的变化,传统的以技术技能为主的信息应用能力必须向以行动能力为核心的信息应用能力提升。在计算机基础教育中计算思维要服务于信息行动。在这一认识指导下,专家介绍了面向应用型人才培养提出的“以计算机学科理论、知识应用、基本技能为基础,以计算思维为主线,以信息行动能力为核心,以信息应用为目标”的大学计算机教育课程体系和解决方案。
还有专家以国家精品课程“程序设计”课程的教学为例,介绍了递归、抽象、枚举、搜索等计算思维诸要素如何在“问题驱动-理清思路-建立模型-构思算法-程序实现”的程序设计过程中运用,以培养学生计算思维与解决问题的行动能力,极好地诠释了计算思维与程序设计行动过程的关系,强调了只有在问题解决的实践中才能培养计算思维与行动能力。
来自台湾的专家介绍了台湾地区大学非计算机专业的计算机教育,它将信息处理能力与批判思维能力很好地结合,着力培养学生信息决策思考力,这也是当前国际的主流趋势。尽管一些提法与大陆不同,其实质还是培养学生运用科学思维和信息技术解决问题的行动能力。
在大会讨论中,针对计算思维能力与信息应用能力的关系问题,来自全国大学的一线教师进行了热烈讨论,发表了各自的观点看法,给出了很多建设性意见,也提出不少疑问。
2)对当前大学新生计算机应用能力掌握状态的估计。
在对新的大学计算机课程改革方案讨论中,就主张取消作为“狭义工具”的计算机基本技能教学内容,专家、教师发表了各自的看法。不同观点的本质并非是否定计算机作为“狭义工具”的重要作用,而是对当前大学新生的计算机应用能力的掌握状态上存在着不同的估计。
主张“取消”的实质是认为,中学信息技术教学的提升使大学新生的计算机基本技能水平已有很大提高,有的甚至比教师还要强,特别是重点大学的入学新生,因此本科与高职非计算机专业计算机基础课程可以消减学时或不用开设了。但由于信息技术并未列入高考内容,也鲜见对全国范围内大学新生计算机基本技能水平的调研数据,使主张“取消”缺乏实证依据。
在论坛中专家对2012年“大赛”情况进行分析,给出了警示。从分析数据看到,在2012年大赛中,大陆有28个省、市、自治区的202所高校的1万多名在校学生参加,总决赛阶段从1万多名参赛者中选拔出534名学生进行决赛。在总决赛中,针对基于国际IC3标准的计算机基本知识、概念及IT工具使用的上机在线竞赛,竞赛结果显示这些经过选拔参赛并进行一定辅导与练习的学生,计算机基本技能与基础知识和概念掌握的平均成绩仅为及格。本科生比高职生平均成绩略高。同类学生平均成绩不高,且标准差和极差过大,说明对“狭义工具”的计算机基本技能掌握严重不平衡。按省、市、自治区统计的平均成绩看,经济发达、沿海地区的平均成绩与西部地区存在差异,但差异不明显。而对重点高校参赛情况的分析可以看出,重点高校的成绩要好于普通高校及高职院校,但不均衡,仅有两所重点大学平均成绩较高,多数重点大学的平均成绩接近总平均成绩,还有一些重点大学的平均成绩在总平均成绩以下。由此,得到的结论是,对计算机基础知识、概念的掌握和基本工具的使用,一般大学生群体的整体情况不会好于参加总决赛学生的这个竞赛结果,所以,不支持“在全国范围,进入高校的学生已经基本掌握计算机的基本操作”的观点。实证研究结论是“大学新生信息技术应用水平总体在提高,但严重不平衡”,掌握好“狭义工具”仍是非计算机专业大学生的基本功,只是大学计算机课程改革要建立在“不平衡”这一实证研究基础上。
在与会专家学者给出的以计算思维为主线的大学计算机课程体系改革方案设计中,从不同视角展示了对以计算思维为主线的大学计算机课程体系改革的认识和探索,也反映出对“狭义工具”的计算机基本技能在大学计算机课程体系改革中的不同态度,也许这正是高等教育分类发展形势下,大学计算机课程改革的良好基础。
关键词:人才培养;产学研一体;研究性学习;校企合作;多学科融合
近年来,计算机学科自身的内涵、外延和发展的动力与源泉都已经发生了重大的变化。计算机在不同领域中的创新技术与工程应用已经成了计算机学科发展的重要源泉,计算机学科的知识体系也逐渐呈现学科融合的趋势,人才国际化竞争趋势越来越明显。针对这些变化,浙江大学计算机学院根据自身长期积累的教学基础和在技术与工程应用研究方面的优势,在人才培养模式上锐意改革,建立了以工程型、复合型、国际化为特色的产学研一体的人才培养体系。
多年来,浙江大学计算机学院利用自身的学科研究特色,针对具有国际竞争力的复合型工程人才培养需求,整合计算机、软件工程、数字媒体技术、工业设计(信息产品设计方向)4个专业的资源,围绕“知识、能力、素质”的培养目标,以能力培养为导向,以精品课程推动课程群建设,并以课程建设为基础[1-2],构建了多层次的工程实践能力培养体系[3]、多方位的国际交流能力培养体系、多学科融合的人才培养知识体系,在计算机类工程型、复合型、国际化人才培养模式的探索和实践方面取得了显著成效[4]。
1建立多层次的工程实践能力培养体系
长期以来,浙江大学计算机学院以课程建设为基础、产学研合作为平台,积极探索教学科研互动、校企互动、课内外互动的实践教学模式,针对工程实践能力培养的不同阶段,建立了基础实践、工程方法实践和创新体验等多层次的实践教学体系。
1)引导研究性学习,以课程综合型实验为基础,培养学生基础实践能力。
在本科专业基础和专业课程教学中,大力推行课程设计(俗称大作业Project),通过团队式合作、研究式分析、工程化设计完成较大型的系统或软件的设计题目。课程设计也为教师提供了一种从科研中提炼综合性、设计性实践内容,将科研成果转换为教学内容的有效途径。
目前我们已在80%的专业基础和专业课程中设置了课程设计教学环节,如在3门国家精品课程中分别开设不同类型的综合实验:“操作系统”――Linux系统分析、“软件工程”――典型金融软件设计、“程序设计基础”――趣味游戏设计。在实施课程大作业十
作者简介:陈刚(1973-),男,教授,博士研究生,浙江大学计算机科学与技术学院副院长,研究方向为计算机软件;何钦铭(1965-),男,教授,博士研究生,研究方向为计算机应用;陈越(1967-),女,教授,博士研究生,研究方向为计算机软件;陈丽(1970-),女,副研究员,硕士研究生,研究方向为高教管理。
多年经验的基础上,组织编写了国内第一套涵盖13门计算机专业基础课程和计算机专业课程的课程设计系列教材。
2)加强校企合作,将主流技术和工程方法引入教学实践中,培养学生的工程方法实践能力。
我们与企业建立战略技术联盟,与知名企业合作,包括:共建专业方向和模块课程、聘请企业教师授课、共同指导毕业设计和学位论文、共建工程训练教学基地等,将主流技术和工程方法引入教学实践中。在课堂上组织学生对若干相关热点问题进行研讨,作正式的技术报告,将项目实践引入课堂教学,鼓励学生将最新的科学研究成果进行技术化、工程化。让学生在接触学科前沿、体验新技术的同时,培养科学实践能力和动手能力。目前有9门课程获教育部-微软(IBM、Intel、SUN)精品课程,其中嵌入式系统、软件工程、并行计算与多核程序设计3门课程获国家精品课程。
我校已经与浙大网新和美国道富银行共建了金融信息技术方向的课程体系,与阿里巴巴公司共建了电子服务技术方向的课程体系等。开设项目实训课程10个左右,同时与Intel、微软、IBM、网易、网新、道富等著名国内外IT企业建立了稳定的企业实习基地30多家。
3)以学科竞赛和科研训练为手段,激发学生自主创新兴趣,培养其创新实践意识。
我校通过丰富多彩的课外实践活动,探索课内外互动的实践机制,加强对学生创新意识的培养,主要包括鼓励学生参与科技竞赛、科研训练和创新俱乐部(社团)活动等。
一年一度的“浙江大学学生电脑节”已举办,每一届电脑节直接参与学生人数均达到2000余人次,成为浙大最有影响力的学生科技活动之一。学院还积极组织学生参与各类国际竞赛,包括ACM大学生程序设计竞赛、国际顶级设计大赛等,并频频获奖。近5年共有100多位学生获省级以上各类竞赛奖,其中国际大奖50多项;利用学校的大学生科研训练计划(SRTP)和自主设立支持的SRTP项目,使SRTP的学生参与面达90%;先后创建了IBM技术俱乐部、Intel技术俱乐部、腾讯创新俱乐部等近10个与专业技术相关的创新型学术俱乐部,成员超过500人。
4)以高水平的工程技术研究中心和重大项目为平台,培养学生的工程创新研究能力。
我校将高水平的工程技术中心作为工程型人才培养的重要基地,并结合近年承担的面向国家产业发展需求的重大工程技术性项目,吸引一批高年级的本科生进入工程技术型研究基地和课题组,从事高水平的工程技术创新研究工作。
现有的工程技术研究中心有:道富技术中心(金融软件)、嵌入式系统教育部工程研究中心、计算机辅助产品创新设计教育部工程研究中心、视觉感知教育部-微软重点实验室等,每年吸收本科生150位以上。其中,道富技术中心几乎参与了美国道富银行所有的核心金融系统研发项目,成为国际化金融信息人才培养的重要平台,也是吸纳毕业生就业的大户。
2建设全方位的国际交流能力培养体系
我校以双语课程建设为基础,大力推行全英语教学,通过营造国际化教学语言环境、拓展国际交流与合作、引进国际师资等方式,构建多方位的国际交流能力培养体系,提升国际化教学的质量。
1)推进双语教学,营造国际化教学语言环境,培养国际化交流基础。
大力推动双语教学,开展全英文教学,为本校学生和国际生源创造必要的国际化教学语言环境。
目前,我们有46门本科专业课程采用英文教材并实施双语教学,开设了全英文双语教学课程共27门,其中数据结构、计算机网络两门课程获国家双语示范课程;另外我们还聘请外籍英语教师为学生开设高级英文写作、高级英语口语等实用语言课程。
2)拓展国际交流与合作,提高学生的跨文化国际交流能力,探索国际合作教学的新模式。
通过形式多样的海外高校短期交流、中加双学位项目等,加强学生跨文化国际交流能力的培养,在课程体系建设、课程内容建设、海外师资队伍的聘任和教师国际交流等方面全面提升国际化教学的质量。
目前,我院已与加拿大、法国、爱尔兰、荷兰、新加坡、日本、德国、瑞士、瑞典、澳大利亚等地的19所高校实施本科学生交流。全部项目每年涉及本科生约100余名,达到单届学生总人数的25%。
2005年开始我院与加拿大西门菲莎大学(SimonFraserUniversity,简称SFU)合作,启动了中外学生共同参加的双向“2+2”计算机本科双学位项目,不仅在培养方案上融合两所优秀高校的特色,而且在双方教师的互派、两国学生的融合教育方面创立了新的模式。接下去,将继续探索研究生双学位项目,发挥两校优势,积极组建国际化团队联合培养研究生。
3)引进国际师资,拓展国际生源,建设具有国际吸引力的人才培养环境。
我院聘请了一批国际知名大学的学者和国际著名IT公司的高级技术人员参与课程教学,并积极拓展国际生源,形成了具有吸引力的国际化人才培养环境。
近五年来,我院邀请了24位外籍专家学者讲授本科专业课程32门次,接受来自加拿大、美国、法国、爱尔兰、澳大利亚、新加坡等国留学本科生89人(其中2009年接受22人),分别在我院进行课程学习、工程实践、毕业设计等专业训练,其中33人为攻读本科学位的全日制学生。
3创建多学科融合的人才培养知识体系
根据计算机学科交叉融合的发展趋势和社会需求,我院发挥学科研究优势,以计算机技术课程为核心,课程叉为基础,创建了多学科融合的人才培养知识体系。
在专业建设中,我院突出学科交叉融合的特色,催生了新的交叉学科研究方向,实现了教学与科研的良好互动。
1)以“宽、专、交”的知识体系为目标,建立融合多学科知识的模块化课程群。
围绕“宽、专、交”的目标,我院整合计算机、软件工程、数字媒体、工业设计(信息产品设计方向)4个本科专业的教学内容,并通过模块化的课程群和交叉课程实现多学科知识体系的融合。
软件工程专业以计算机核心技术为基础融合了软件工程方法、金融信息技术、软件开发技术、电子服务工程等;数字媒体技术专业以计算机核心技术为基础融合了多媒体技术、艺术设计等;工业设计专业(信息产品设计方向)[5]以设计方法与技术为基础融合概念创新设计和计算机嵌入式系统技术等;计算机科学与技术专业则围绕系统设计与分析的培养目标,融合数字媒体、金融信息技术、人机交互设计等多个应用领域方向。
目前,浙江大学计算机学院共建设完成12个课程群,所有课程群均涉及2个以上专业,如图1所示。2门学科交叉型课程获国家精品课程为计算机辅助工业设计、(信息产品)整合与创新设计。
图1以计算机技术为核心的多学科融合知识体系
2)发挥学科研究优势,突出专业建设特色,催生学科研究新方向。
我院工业设计专业是国内唯一一家设立于计算机学科内部的该专业,已形成了“工业设计+嵌入式系统+机电一体化”的复合型人才培养特色,培养了一批信息产品创新设计人才并形成了富有优势的信息产品创新设计研究方向。软件工程专业则依托学科在工程技术研究方面的优势,在金融信息学培养方向上具有很强的特色,形成了金融软件系统优势学科研究方向;并充分利用我校在计算机图形学和多媒体技术研究方面的优势设立了国内第一家数字媒体技术专业。
目前所有3个拓展专业都被评为国家特色专业,其中工业设计专业被评为第一类特色专业;软件工程专业的软件开发技术、金融信息技术、服务科学与技术3个专业方向被评为第二类特色专业(方向)和国家人才培养创新实验区;数字媒体技术被评为第二类特色专业,同时也已成为部级动画教学研究基地。
3)综合多学科知识,实践创新体验,建立省级研究生教育创新示范基地。
目前我们已有2个教育基地成为浙江省首批研究生教育创新示范基地,分别是浙江大学―网新国际金融信息技术与工程研究生教育创新示范基地、浙江大学―杭州亿脑智能科技有限公司信息产品创新设计研究生教育创新示范基地。
网新国际金融信息技术与工程研究生教育创新示范基地与金融等专业的学科交叉,注重计算机软件、金融学、工程训练以及外语能力的培养。通过提供研究生的国际化科研实践基地,实战性的国际合作项目,不仅可以让研究生掌握产业动态,融入全球理念并拓展其研究视野和实践领域,还可以充分发挥研究生的积极性,实现理论研究与国际商业需求的无缝对接。每年选拔的基地研究生不仅可获得3个月的海外研究和实践机会,而且有经验丰富的企业科研人员作为实践导师并制定以国际化为特色的实践计划。同时,合作企业网新国际还将为出访学生提供与国际专家的合作科研项目,以真实的银行金融历史数据为基础,从事金融数据分析与挖掘方面的研究。
杭州亿脑智能科技有限公司信息产品创新设计研究生教育创新示范基地,以“工业设计+嵌入式系统+机电一体化”为创新模式,以技术创新为核心,与形式化的视觉表达相结合,通过功能创新、行为方式等创新模式整合多学科知识,将“设计+技术+商业+用户”紧密整合在一起,由内而外,真正地将概念设计转化成生产力,为我国传统产业的提升作出贡献。在教学上,引入研究型、应用型课题到专业课教学,推行学科间互动,构建围绕学科发展的开放式创新教学平台,建立国际化互动的指导教师团队,以及建立国际竞赛和知识产权成果推进平台。
4结语
教学改革的深入开展需要有相应的组织与政策
保证。学院十多年前就开始建设以课程群为基础的课程小组,并以院级教改项目为驱动,教师评价政策为保障,全面推进教学改革的深入开展。目前,已建立了14个本科课程小组(含12个课程群)和9个研究生课程小组,每年投入教学经费近100万元,同时设立了教学骨干教师岗位,以确保教师从事教学的积极性。
建立产学研一体的工程型、复合型、国际化计算机人才培养体系,有力地提高了人才培养的质量。培养的学生以其扎实的专业基础、良好的工程实践能力,在就业市场中广受好评。近年来,本科生就业率在99%以上,研究生就业率100%,毕业当年起薪保持全校第一。50%以上的就业学生到全球500强企业、国际一流企业工作。2008年48%的本科生出国深造或国内读研究生,其中出国深造比例13%。近年毕业生中,涌现了许多耀眼的“新星”,如浙江省十大“创业之星”、“手机备备”的发明人方毅,北京奥运会“祥云火炬”的核心设计师章俊,被美国商业周刊称为TopCoder程序设计竞赛“大赢家”并据此要重新评估中国软件工业水平的吴嘉之等。
参考文献:
[1]教育部高等学校计算机科学与技术教学指导委员会.高等学校计算机科学与技术专业核心课程教学实施方案[M].北京:高等教育出版社,2009.
[2]教育部高等学校计算机科学与技术教学指导委员会.高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)[M].北京:高等教育出版社,2006.
[3]干红华,何钦铭,陈德人,等.工程型国际化软件人才培养模式探索与实践[J].计算机教育,2008(13):30-34.
[4]陈根才,何钦铭,陈越,等.与时俱进的计算机本科教育[J].计算机教育,2008(13):26-29.
[5]孙守迁,应放天,罗仕鉴,等.多学科知识渗透的创新型工业设计人才培养模式探索与实践,计算机教育,2008(13):35-37.
EngineeringandCompoundOrientedInternationalizedComputingTalentTrainingwiththeIntegrationofIndustry,EducationandResearch
CHENGang,HEQin-ming,CHENYue,CHENLi
(CollegeofComputerScienceandTechnology,ZhejiangUniversity,Hangzhou310027,China)
摘要:本文分析了计算学科课程教学计划CCC2002的特点,并从计算机科学与技术方法论的角度探讨了基于知识背景开展计算学科课程教育的基本思想,另外还研究了计算科学思想史研究与基于知识背景计算学科课程教学的关系,同时在课程内容设置、教学组织实施、学生学科素养与能力培养等方面阐述了基于知识背景课程教学对计算机课程教学改革产生的重要影响。
关键词:CCC2002;课程教学;计算科学;科学史
中图分类号:G642文献标识码:B
1引言
随着计算机的诞生和计算机科学技术的发展,计算技术作为现代技术的标志,已成为世界各国许多经济增长的主要动力,计算领域也已成为一个极其活跃的领域。计算学科正以令人惊异的速度发展,并大大延伸到传统的计算机科学的边界之外,成为一门范围极为宽广的学科,人们对计算学科的认识,已从知识层面上升到了方法论的高度[1]。
1989年1月,美国计算机学会(简称ACM)和美国电气和电子工程师学会计算机分会(简称IEEE-CS)联合攻关组在《ACM通讯》杂志上刊登了他们历经4年的研究成果――“作为学科的计算科学”的报告[2]。该报告围绕计算机的主要现象,从学科的三个基本形态,即理论、抽象和设计入手,结合科学与工程科学两大学科门类的基本特征,完成了计算学科的“存在性”证明,首次给出了计算学科的定义,为“计算”作为学科及其以后的发展奠定了基础。如今,计算已不再是一个一般意义上的概念,它已成为“各门科学研究的一种基本视角、观念和方法,并上升为一种具有世界观和方法论特征的哲学范畴”[3]。在长期的社会生产实践中,计算科学的内涵与外延从学科的角度得到进一步诠释,ACM和IEEE-CS以及计算机界关于计算学科认知问题的研究不断取得重要成果,其中,CC1991(“计算学科教程1991计划”的简称)和CC2001(“计算学科教程2001计划”的简称)报告为计算学科建立了现代课程体系。随着计算科学的不断发展,其课程体系也在不断完善,2004年11月,ACM、AIS和IEEE-CS又联合公布了新的计算学科教程CC2004,文[4]对该课程体系做了分析与思考。
随着信息技术行业人才需求的与日俱增,世界上绝大多数高等院校均设立了计算科学或与之相关的专业,国内的高等院校也不例外。为了有效地推行国内的计算机科学与技术教育,同时又能与国际接轨,中国计算机科学与技术学科教程研究组于2002年提出了“中国计算机科学与技术学科教程2002”(ChinaComputingCurricula2002,简称CCC2002)[5],该教程从计算机学科教学计划的发展、计算机学科的定义、计算机学科本科生能力培养、计算机学科知识体系演变、计算机学科课程体系结构、计算机学科课程的教学计划与组织方法等方面全面阐述了计算机科学与技术学科知识与课程体系的外延与内涵,进一步明确了新形势下计算机科学与技术学科本科生能力与素质培养的基本要求,为国内高校计算机科学与技术学科制定培养方案和形成具有自身特色的课程体系提供了指南,对中国高校计算机科学与技术学科教育的改革和发展具有重要的参考价值和积极的推动作用。CCC2002给出了中国计算学科课程体系的描述,但如何围绕这一课程体系概括的知识领域和知识点来组织知识内容仍然具有随机性,特别是在幅员辽阔、经济和文化发展水平存在地区差异的中国,这种随机性尤为突出。因此,我们必须深入分析CCC2002的特点,理解其精神实质,根据地区的特点和各高校自身发展的水平与特色合理选择或组织各类课程的教学内容,积极开展教学改革,不断强化课程建设,只有这样,才能为课程目标的实现建立良好基础。
2CCC2002的基本特点
CCC2002的特点在于,它既有对国外研究成果的借鉴,又融合了国内计算机科学与技术学科教育研究成果;由体系到课程,自顶向下进行课程体系设置,按基础课程(包含部分核心知识单元)、主干课程(包含大部分核心知识单元)、特色课程(发挥各校特长,培养学生个性,体现地区特色),提出了课程分级实施策略;指出在知识领域、知识单元、知识点的描述及核心课程的设计方面,应充分体现“课程体系设计组织与学生能力培养和素质提高密切相关”的理念。CCC2002强调教学过程中实践的重要性,同时又要注重创新精神和能力的培养。值得一提的是,该教程提倡研究型教学,进一步明确了教学向教育转变的重要思想。
在CC2002教程的引导下,国内从事计算机科学与技术学科教育的广大学者对计算机科学与技术学科教育的诸多问题,如培养计划、课程设置、教学类型、教学计划、教学实施、实践设计、教学评价等进行了广泛而有益的探讨[6,7,8,9],并根据学科体系要求,编写出版了一大批教材,丰富了计算学科课程体系教材建设的内容,推动了计算学科课程教学改革的进程。然而,一个不容忽视的现象是,虽然我们一直都在强调课程与教学的目的是提高学生的综合素质,但是究竟什么是当代学生经过学科课程教育应当具有的综合素质,仍然是一个值得探讨和研究的问题。就目前国内较为普遍存在的教育理念而言,近代课程与教学理论凯洛夫(N.A.Kaiipob)的“捷径主义”思想仍旧占据着主导地位,受这一思想的影响,教材内容通常比较“经典”,教学过程各个环节围绕这些经过验证的、可靠的和基本成型的知识而进行,至于这些知识的形成与发展却少有问津。所谓“捷径主义”认为“学生学习的是科学上可靠的知识而不负有发现真理的任务,走的是教师引导的捷径而避免前人在历史上曾走过的弯路”[10]。虽然这一思想“发扬了传统教学论的优点,纠正了适用主义教育忽视系统知识偏向”,在目前高校教育的某些方面仍然具有积极作用,但就总体而言,它与CCC2002倡导的研究型教学、教学向教育转变理念有不相协调的方面。因此,高校计算学科课程教学内容的改革理当受到人们的关注。
3基于知识与知识背景的课程教学
随着教育理念的不断更新,教育教改研究与实践的不断发展,人们已越来越清楚地认识到学生实践与创新能力培养的重要性,越来越注重学生在知识点掌握基础上知识结构的形成,越来越感受到学生关于学科综合素养的内涵,在理工学科课程体系中引入越来越多的与学科有关的人文科学的内容,可以说是适应时代要求和发展的一种进步,是教学向教育转变的一种必然。然而,要真正做到教学向教育转变,仍然有许多值得研究和探索的工作要去完成。其中,如何根据计算学科教程描述的学科知识领域、知识单元和知识点,在教材或教学过程的知识内容安排与讲授过程中,打破传统方式,在现有基础上推陈出新,就是一项非常有意义的工作。我们是否可以做这样一种尝试,在课程知识的组织与传授过程中,把知识的来源即知识产生的背景有机地融入其中,使之成为教材内容的一部分或补充,让学生在学习课程知识的同时,了解知识的背景和来源,更多地知晓与学科知识有关的人和事,更深地理解知识的内涵,更好地把握知识的运用与发展趋势,使学生在学习、理解和掌握知识的同时,学科意识和学科素养得到培养与发展。这样的做法无疑是有益的但却并非易事,有大量值得研究和探索的课题和实践活动,其中以教学内容改革为先导的课程教学改革将成为学科教育改革的主要内容,它涉及教育理念的更新、教学方式与方法的运用,教学组织形式的变化、教学评价体系的构建等等,同时对教师队伍的知识结构也将产生新的要求。它不仅要求人们具备学科知识,而且还要有学科思想史和学科方法论的知识。因此在学科教育中应该有更多的教育工作者关注科学和学科思想史研究。就计算学科而言,计算学科思想史研究是基于背景知识计算学科课程教学改革的基础。
3.1计算科学思想史研究
现代计算科学在理论和应用方面取得的伟大成绩,是人类长期从事社会生产实践的结果,是无数致力于计算科学研究与实践的工作者们共同智慧的结晶。计算科学是整个科学体系的一个重要组成部分,是研究计算知识、计算理论及其应用的科学,是关于计算学科知识体系和与之相关领域知识及其相互间关系的总和。而计算科学思想史则是研究计算科学的形成与发展过程的科学,其研究的目的在于通过对计算科学发展过程中各个事实、各种现象和思想的分析,总结计算科学的历史经验,揭示计算科学的发展规律,促进计算科学的发展。计算科学思想史的研究对象并非计算科学本身,它是以哲学、历史学的观点和方法来分析计算科学的发展历史。
作为一门科学,计算科学思想史研究有其自身的理论体系,这一理论体系涉及计算科学、工程学、哲学、历史学、心理学、社会科学等诸多学科领域的知识。计算科学思想史是以计算科学理论与实践的形成与发展为基础,以辩证唯物主义和历史唯物主义为指导,以科学思想史研究的基本原理为依据,分析人类历史上计算科学重要成果和重要学术理论的诞生过程,其思想与方法的形成过程以及它们的科学与哲学意义。计算科学思想史研究将随着计算科学的发展和人类进一步的发明与发现而不断变化并日趋完善,是一门极富发展性的科学。文[11]中,作者对计算科学思想史研究的特点、内容、方法等问题进行了探讨。
3.2基于知识背景的课程教学
所谓基于知识的课程教学就是把学科知识与知识背景有机结合,使之成为课程教学内容的统一体进行施教与学习的过程。其教学目的是让学生在了解和掌握学科知识的同时,了解知识产生的背景,感知知识背后隐藏的思想与方法,为学生提供更为广阔的想象与思维空间,培养学生的学科意识,提高学生学科文化水平。
知识背景的内容可以是对知识产生过程的叙述,也可以是对学科知识未来发展前景的展望;可以是直接的背景知识,如与学科知识有关的知识进程、事件、理论、思想方法和人物等,也可以是与学科密切关联的相关学科的知识;可以是正史中真实的故事,也可以是传说和轶事;可以是知识成功应用的经典,也可以是正在实践中的探索。
知识背景组织形式可以采用课程设置的方法整体阐述学科的形成与发展以及思想与方法,如计算机科学与技术导论、计算机科学与技术方法论等;也可以是针对具体课程的知识背景叙述,如关于课程的导论、绪论、前言等;还可以是关于课程单元知识背景的描述,如每个章节的前序、引导等;甚至可以是涉及知识点的知识背景,如有关概念的形成,概念与概念之间的关联等等。
把知识背景作为课程教材的内容,或在教学过程中适当地介绍与课程知识相关的知识背景,在目前高校的计算学科课程建设和课程教学中或多或少地受到人们的关注并加以应用,但这并非真正意义上的基于背景知识的课程教学。从基于课程知识的教学到基于知识与知识背景有机统一的课程教学,并非一门计算学科导论所能解决的问题,它涉及整个计算学科课程内容的组织,课程教学计划安排,课程教学模式设计,课程教学方法运用,课程教学评价机制建立等一系列与课程建设和课程改革有关问题的研究、探索与实践,是一项需要广大的计算学科以及相关学科的教育工作者共同参与和共同努力才能够有效实施并不断取得进展的系统工程项目。
如果说基于知识的计算学科课程教学是围绕计算科学的知识体系及其发展过程中不断取得的最新成果而进行的知识与技能传授,那么基于背景知识的课程教学则是在此基础上的学科意识培养和学科素养教育,至少有以下几个方面的作用。
(1)将有利于学生对课程知识学习兴趣的提高
教育心理学认为,学习兴趣是指人们探究事物的心理倾向和获得知识的原动力。古今中外的教育学家们对在教学过程中培养和激发学生的学习兴趣都是极为重视。中国古代教育大师孔子说:“知之者不如好之者,好之者不如乐之者。”德国近代教育家第斯多惠(F.A.W.Diesterweg)在其倡导的“全人教育”理念中就阐述了教育的任务主要是发展学习者自身的能动性思想,认为:“我们的教育艺术不在于传授本领,而在于激励、唤醒、鼓舞。”瑞士现代著名心理学家皮亚杰(J.Piaget)更加强调个体在认知生长过程中的积极作用,并明确指出:“所有智力方面的工作都依赖于兴趣。”由此可见,学习兴趣是学生学习的情感意向和动力,是学习积极性和自觉性的核心,在全面推行以培养创新精神和实践能力为重点的素质教育的今天,培养学生学习兴趣尤为重要。
影响学生学习兴趣的因素很多,如教学方法、教学手段、教学风格、教学态度、教学评价等等,其中教学内容的组织安排也不失为一重要因素。教学实践结果表明,学生对“知识背景”感兴趣的程度要比对“知识”本身更高。因此,如果能够在课程教学内容编排中将与课程知识有关的人物、事件以及相关的理论与方法实例有机的融入其中,就能够在教学的实施过程中不断地“激励”和“唤醒”学生的学习兴趣,并通过兴趣的延伸,使学生在不知不觉中获取并掌握知识。
(2)将有利于学生对课程学习知识内容的理解
学生对知识的认识、理解和掌握过程,应遵循人们认识客观世界的一般规律,即是一个从感性认识到理性认识的过程。感性认识是人们通过感官与认知事物接触而形成的关于事物生动和直接的映像,包括事物的具体特性、表面现象、各个片面及其外部的联系等;理性认识是人们在感性认识的基础上,进行抽象和概括而形成的对认知事物的本质和内部联系的认识,通常有概念、判断和推理三种基本形式。在课程学习过程中,我们往往会强调对概念的理解,对知识点的掌握等,这样的认知应属理性认识范畴。基于知识的课程教学内容组织通常是按照概念的引入、概念到概念、例题分析、实际应用举例,习题练习等步骤顺序进行,而课程内容的选择通常是经过实践检验或严格论证的知识的精华部分,是已经上升为理性认识的产物。让学生在对认识的事物尚不具备“自然经验”和“社会经验”的基础上,去“理性”地把握事物的本质,只能是“填压式”的知识灌输,于是在我们的课程教学中就有了许多“先记忆再慢慢理解”的东西。基于背景知识的课程教学将经过提炼的前人对事物认识的自然经验和社会经验呈现在学生面前,在一定程度上可以弥补学生在对事物感性认识方面的不足,帮助学生更好地理解和掌握课程的学习内容。
(3)将有利于学生对课程知识体系的把握
在高等教育中,学科领域的知识体系通常是以课程体系来描述的,而课程的知识体系是由课程涵盖的知识主题及其相互间的关系来刻画的。基于知识的课程教学往往只注重课程知识主题或知识点的教学而忽略课程之间、主题之间、知识点之间内在联系的阐述,使得学生在学习过程产生难以知识联想,对知识的认识是“只见树木,不见森林”。例如,很少有学生能够将平面中的“点”、集合论中的“集合”、命题逻辑中的“命题”等概念统一进行思考的,也很少有学生能够准确地回答在线性代数课程中学习向量空间和向量运算真正目的等等。基于知识背景课程教学的目的之一,就是通过知识背景的阐述,将课程知识的初始本质及其相互间的关系呈现出来,为学生营造知识联想与知识探究的学习情境,更加全面地把握课程的知识体系。
(4)将有利于学生创新能力培养与提高
指出:“创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”而“教育是知识创新、传播和应用的主要基地。也是培养创新精神和创新人才的摇篮。”因此,在实施素质教育过程中,着力培养学生的创新精神与创新能力应成为我国教育改革和发展的当务之急。CCC2002竭力倡导的研究型教学以及教学向教育转变的根本目的之一,就是要在学科课程教育过程中,不断强化学生创新素质的培养。创新的过程是知识综合运用与发展的过程,对知识体系的全面掌握是创新的基础。创新能力培养受到教学内容和教学方法的影响。基于课程知识的教学通常以传授知识为主,教学方法也以课堂讲授为主,这种教学往往使学生思维固化,知识活力得不到发挥,很大程度上影响了学生创新能力的发展。而基于知识背景的课程教学不仅能够大力开发学生的想象力和直觉思维,拓宽学生的学科视野,同时还能够有效地运用案例教学、活动教学、讨论教学、探索性学习等各种方法,促进学生个性发展,使学生独立思考、批判思维、严密分析、从不同视角看问题等多方面能力得到培养和提高。
(5)将有利于学生学科文化素养的提高
科学技术的发展导致学科和专业的发展,使得分科教育成为目前我国高校人才培养体制的主流。分科教育很显然是为了造就专门人才,但狭窄的专门训练往往不利于培养学生的创新意识和创造力。在经历了长期的教育实践之后,人们已认识到分科教育在某些方面的严重不足,提出了新形势下“通才教育”观念,并以某些高校作为试点开展“大类培养”教学模式的实践与探索。如今的社会是信息社会,对IT本科生的知识结构提出了新的要求,除了要求他们掌握专业知识外,还要求他们具有数学、物理及相关领域知识,更有人文社会科学知识的要求,既能够适应专业的变化和拓展,又要有敏锐的专业拓展意识。总而言之,现代人才培养过程更加强调的是学科素养,它涵盖了对学科知识的掌握,对学科过程与方法论的认识和对学科的理解与情感。正如专家指出的那样,在人才教育与培养过程中,“大多数人真正需要的是领会科学的精神、掌握学科的方法、树立恰如其分的科学形象,以便在这个科学时智地对待科学、对待社会、对待生活。”[12]如果我们将这样的理念带入学科教育过程就不难发现,仅仅靠基于知识的课程教学是无法实现这一要求的,而基于知识背景的课程教学至少可以从两个方面弥补其不足:首先,基于知识背景的课程教学以发展和进化的观点反映学科知识进程,能够有效地避免课本知识的“神圣化”与“教条化”,将批判与继承的有机统一贯穿学生知识获取过程;其次,基于知识背景的课程教学以学科与相关学科分支领域知识相互联系的思想展现学科知识内容,能够有效地克服对学科知识掌握的“孤立性”和“片面性”,是学生的学科意识与学科素养得到进一步培养与提高。
4结束语
计算学科不只是简单的一些课程汇总,而是一个庞大的知识体系,它对人类社会的发展与进步有着重要而深刻的影响。目前,全国几乎所有高校都开设了计算机专业,有些计算的概念和知识还下放到了中小学课程之中。在此情形之下,如何构建我国计算科学的教育体系,培养什么样的信息技术人才,如何让全社会更深刻地认识计算科学的内涵,更全面了解计算科学的发展规律无疑是一件十分有意义的工作。基于背景知识的课程教学是一种理念、思想和方法,也是一种实践,虽然它不是一个什么新的提法,已或多或少地被人们认识并加以应用,但总体上仍然未形成一种趋势。基于知识背景的课程教学应有它的理论体系、方法体系和实施体系,这些都是需要研究、探讨和实践的,可能还需要一个较长的过程。然而,当我们面对计算学科教育改革中出现的种种问题和在计算学科人才培养中面临的种种困惑时,首先应该想到的是作为计算科学的教育工作者应当作些什么。
参考文献:
[1]董荣胜,古天龙.计算机科学技术与方法论[M].北京:人民邮电出版社,2002.
[2]DenningPJ,etal.Computingasadiscipline.CommunicationsoftheACM[J].1989,Vol.32(1).
[3]郝宁湘.计算:一个新的哲学范畴[J].哲学动态,2000,(11).
[4]蔡启先.CC2004计算学科教程体系分析与思考[J].高等工程教育研究,2006,(5):77-81.
[5]黄国兴等.中国计算机科学与技术学科教程2002[M].北京:清华大学出版社,2002.
[6]周世平.CCC2002教学计划实施环节的探讨[J].计算机教育,2004,(8):56-58.
[7]索剑.“计算机科学与技术导论”教学与思考[J].计算机教育,2005,(1):40-41.
[8]李明江.CCC2002,CC2004与地方院校计算机专业教育的困惑[J].黔南民族师范学院学报,2006,(6):43-47.
[9]时全生,鲁书喜.《计算机导论》课程知识体系结构研究[J].福建电脑,2007,(4):40-41.
[10]王道俊,王汉澜.教育学[M].北京:人民教育出版社,1989:185-187.
[11]张晓如,张再跃.浅谈计算科学思想史研究[J].计算机科学,2006,33(11):11-14.
[12]吴国盛著.科学的历程[M].北京大学出版社,2002.
ComputerCoursesTeachingandTheComputingScienceHistoryResearch
ZHANGXiao-ru,ZHANGZai-yue
(SchoolofElectronicsandInformation,JiangsuUniversityofSci.&Tech.,Jiangsu,Zhenjing,212003.)
计算机仿真是集系统工程、控制理论、计算技术于一体的综合性学科,它利用计算机强大的信息处理能力构建数学模型、模拟现实系统,并通过评价仿真实验数据来验证模型的正确性。在信息科学领域,计算机仿真已经成为研究者从事科学研究的重要手段。另外,在实际科研条件不充分的情况下,计算机仿真也是研究者从事课题研究的有力工具。它可以帮助研究人员在一定程度上摆脱科研条件的限制,从事大量专题研究。对于科研条件相对落后的高校,培养信息类研究生的计算机仿真能力显得尤为重要。科研设备昂贵而科研经费不足导致一些前沿的课题研究无法开展,一方面限制了学校自身的学科发展,另一方面也限制了研究生的培养。从培养通信专业研究生的科研能力出发,本文提出应用仿真软件和计算机实验设备构建科研仿真平台,改善研究生从事课题研究的环境。文中提到的平台建设方案不仅能缓解科研条件薄弱导致科研领域受限的问题,而且可解决现有仿真软件很难满足新课题研究需求、仿真结果跟实际系统脱节的问题。在平台建设过程中,研究生将提升自己的计算机仿真能力,扩展课题研究的领域。
计算机仿真软件应用现状
计算机仿真研究始于上世纪八十年代,国外有研究组织以计算机为工具模拟复杂系统。到今天,已经出现了大量的计算机仿真软件。现有的仿真软件(特别是商业软件)存在如下缺陷:首先,很难满足新课题的研究需求。很多商业仿真软件面向实验教学,旨在提高教学效率。其功能大多模拟已经很成熟的系统和模型,适合已经存在的工程应用。对于一些新领域、新课题的研究,由于理论模型需要不断更新和完善,其内容很难得到仿真软件的同步支持。新领域和新课题的支持欠缺导致这些软件不能很好地满足科研需要。其次,大部分商业软件不提供开源代码或者深入开发的接口。当面临新课题时,研究人员无法有效扩展这些软件,使之应用于新的研究领域。最后,仿真设计的系统跟所模仿的实际系统存在差距。计算机软件的模拟过程往往忽略大量实际约束条件,更多地停留在理论设计层面,可能导致仿真结果跟实际应用脱节。
构建仿真软件平台培养研究生的科研能力
在培养通信专业研究生时,导师应该充分考虑到仿真软件上述的缺陷,锻炼学生正确使用仿真软件从事课题研究的能力。从而摆脱已有软件的功能限制,增强科研的灵活度。
1.建立开源的仿真软件实验环境从开源仿真软件入手,摸索改进和自主设计仿真软件的方法,建立适合课题研究的仿真软件平台。图1说明了本研究的思路。通信领域的很多课题都是开放的,研究生可以选择自己感兴趣的方向。但科研基础、科研经费、科研时间以及实验条件的限制,最后导致科研基础薄弱,无法为研究生提供优良的科研环境,支持其从事新课题、新热点的专题研究。通过引入仿真软件,研究生可在导师的指导下改进仿真软件或自主设计仿真软件。最后,形成以仿真软件为平台的科研环境。这不仅弥补了科研资源的匮乏,而且拓展了课题研究领域,研究生可以根据自己的兴趣方向开展专题研究。
2.实验环境中用到的仿真软件根据研究方向和参与项目的分工,导师应该为学生指定合适的仿真软件。譬如,从事网络协议研究的学生,导师可为其安排Matlab和NS2等仿真软件;从事无线通信系统设计的学生,导师可为其安排Matlab和GloMoSim等仿真软件。
3.培养应用和开发仿真软件的能力考虑到仿真软件的缺陷,在培养研究生的计算机仿真能力时需要从两方面入手:第一,选择便于二次开发的仿真软件,培养研究生改进现有软件、甚至自主开发仿真软件的能力;第二,仿真设计跟实际系统设计相结合,在培养研究生原理分析能力的同时增强工程实践能力。前一个方面考虑到仿真软件不一定满足新课题的需要,譬如当前还没有能很好支持认知无线电研究的软件。因此,在指导研究生时,导师一定要考虑到所用软件是否支持二次开发,能有效扩展现有平台,从而支持新课题的研究。开源的仿真软件能很好地满足这一需要,譬如,开源的NS2软件为通信课题提供了一个开放的研究平台,研究者通过添加新功能模块,能将其扩展成适应新课题的平台。
构建计算机实验平台培养研究生的科研能力
在对专题进行原理性研究时,仿真软件为研究的深入提供了很多的便利。但是,仿真软件存在一个不可忽视的缺陷——不能完全还原实际工程场景。基于仿真的研究成果往往是原理性的结论,很难直接应用到工程实践中。因此,除培养研究生的仿真能力外,还需要锻炼其工程应用能力。本文提供了另外一种仿真思路:在利用软件方法进行仿真设计后,再利用计算机实验平台来搭建一些实验原型,近似模拟最后的实际系统。组建这样的原型系统既充实了科研资源,又锻炼了学生的工程实践能力。譬如,为构建一个MPLS网络,实验室需要投入很高的经费购买路由器设备,这意味着经费不充足的实验室无法从事MPLS网络方面的研究。此时,如果在计算机上安装Linux系统,并配置MPLS功能,即可用来充当MPLS路由器并组建一个MPLS实验网络。这种计算机平台仍然是一种仿真环境,但比纯粹的仿真软件更接近工程环境了。学生可以在这样的实验条件下从事很多MPLS网络方面的课题研究,这对提高学生的工程实践能力有很大的帮助。为有效构建计算机实验平台,研究生应该从课题研究需要出发,有针对性地学习计算机系统结构方面的知识和技能。导师应该引导研究生学习《操作系统》、《嵌入式系统》等课程。另外,导师还应引导研究生学习Linux方面的技术,提升学生应用Linux从事系统开发的能力。
关键词:科研评价;顶级会议论文;SCI期刊论文;计算机学科
中图分类号:G321文献标志码:A文章编号:16716248(2017)02005806
Abstract:Tosolvetheproblemthattherearecertainlimitationstotheappraisaloftheacademicpaperinscientificresearchevaluationsystem,thispapertooktheappraisalofacademicpapersconcernedwithcomputerscienceasexampleandchoseoneuniversitysscientificresearchevaluationcriteriaandindicatorsforperformanceappraisalascasetostudyrelevantissuesofacademicpapersappraisal.TheresultsshowthatthekeypointofdeterminingthevalueandorientationoftopconferencepapersandSCIjournalpapersliesinwhethertoinsistoncorrectguidanceinscientificmanagementevaluationsystem.Incomputerscience,mostsymbolicachievementsarepublishedonthepapersofinternationaltopconferenceswhileChinesescientificresearchevaluationsystemstillputsfocusonSCIjournalpapers,whichleadstothelowparticipationandqualityofChinesescholarspublishedpapersatinternationalcomputerscienceconferences.Itputsforwardsomesuggestions,suchastopconferencepapersshouldbestressedinChinesescientificresearchevaluationsystem,theweightofdifferentevaluationindicatorsshouldbebalanced,thedifferencebetweendifferentdisciplinesshouldbeconsidered,qualityevaluationgradeofconferencepapersshouldberaised,theguidanceroleofevaluationsystemshouldbeplayed,anewscientificevaluationindicatorsshouldbeformulated,andthemanagementsystemofscientificresearchevaluationshouldbeimproved.Auniversityformulatedascientificresearchevaluationsystemwhichconsideredthedifferenceofdisciplinesandspecifieddifferentevaluationindicators.Italsolistedthejournalsandconferencesfordifferentdisciplines,whicharerecognizedbyexpertsandprofessionals,andgavespecificationforquantitativeindicatorsofjournalpapersandconferencepaperstocomprehensivelydeterminetheacademicanddocumentaryvaluesofacademicpapers,whichmadegreatachievementsintheinternationalizationofacademicresearch.
Keywords:researchevaluation;topconferencespapers;SCIjournalpapers;computerscience
科学研究是高等院校和研究院所的基本活动,研究成果是研究价值的重要体现,进行科学研究评价便成为高校科研管理工作中的重要环节之一。目前科学家在对科学问题和方法探索的过程中,还需要花费大量的精力形成高水平科研成果,如发表期刊或会议论文、出版著作等。通常意义上的科研评价内容包括项目、论文、专利、成果奖等。其中,学术论文是评价体系中的重要组成部分,特别在高校中论文的质量和数量是衡量个人和团队研究水平的重要指标。
目前,学术论文评价的主要方式包括期刊评价[1]、会议评价[2]、引用评价[3]等。期刊评价侧重于通过对期刊整体水平的评价来界定其刊载学术论文的水平[4],期刊分为:核心期刊、EI源刊(美国工程索引,TheEngineeringIndex,简称EI)、SCI(ScienceCitationIndex,科学引文索引)源刊等。核心期刊源于英国著名文献计量学家布拉德福的研究,指刊载某学科学术论文较多的、论文被引较多、受领域科研人员重视、能反映该学科前沿研究热点和焦点的期刊。国内核心期刊的主流是中国科学引文数据库(CSCD)、北大核心期刊目录等推荐的期刊。EI源刊创始于1844年,是美国首个以了解全球工程文献为目的可供检索的文献摘要和期刊[5]。EI源刊对学术论文水平有一定要求,选刊严格,逐渐成为理工科高等院校和工程研究院所学术水平评价的重要依据。SCI是美国科学技术信息研究所ISI(IsntituteforScientificInformation)对科技刊物和论文进行评价的一种工具[6],能否在世界顶尖SCI期刊上已成为国内高校评判大多数科学工作者科研能力的重要标志以及评职晋级的重要依据。
学术会议是学术交流活动的核心,随着国际学术交流与日俱增,会议评价方式也成为论文评价的重要手段[2]。传统的会议评价为定性指标,如会议主题内容等,定量化指标和评价公式难以直接应用。一些学科则采用专家评估的办法对会议质量进行评定,形成领域列表,作为的指南。
引用评价是以学术论文被同行引用的次数衡量其影响力与重要性[3]。衍生物为期刊影响因子,即期刊论文的平均被引率(等于引用某刊前两年论文的总次数与前两年该刊所发表的论文总数之比)。论文短期高被引说明其选题的先进性和前沿性;长期高被引体现其学术影响力、学术价值和贡献。这也与学科特点有关,不同学科期刊的平均影响因子存在着系统差别。比如,医学领域影响因子在10以上的很常见,而数学领域基本在3以内。
一、学术论文评价存在的问题科研评价指标体系是由各级各项指标及相应权重和评价标准所构成的有机整体,而国际和国内对SCI期刊论文和会议论文这两种不同形式的论文评价各有偏重[7]。从中国科研现状来看[89],科研评价体系比较单一,过分强调期刊论文而忽视会议论文。该评价体系与高校及其教师的切身利益密切相关,对高校和教师的科研工作有着很强的导向作用。因此,如何定位会议论文和SCI期刊论文在科研评价体系中的价值与地位,能否坚持正确导向是科研管理评价体系面临的主要问题。如果两者权重分配有失偏颇,科研工作者的科研热情和创新积极性将会大打折扣,进而会影响相关学科资队伍建设,最终会影响学科发展。
SCI体系和中科院分区体系对引导普通论文评级有一定的积极意义。SCI期刊论文对算法理论描述更为详细、考虑更全面、实验更充分,从统计意义上看,学术水平高于一般的期刊,具有一定的区分度,在科研评价上能达到一定程度的公正性与合理性。但是,如果只采用“SCI标准”,会造成许多国际性高水平的会议成果被排斥在外,得不到公正的评判。由于期刊周期长,在国际领域最为前沿性工作的导向性和区分度稍显不足,难以对快速发展的学术科研起到引领作用。然而,中国高等院校SCI评价对象恰恰是要引领学科发展研究者,在教师职称评审、博士学位点申报与评审、重点学科申报与评审、科研奖励中热衷于追求SCI论文收录数,这是目前存在的重要问题[1011]。
二、学术论文评价现状实证分析计算机的迅速普及与发展为人类社会生活带来了巨大的便利,计算机学科的研究成果被全社会广泛关注。但是,与其他历史悠久的一些学科相比,计算机学科作为一门新兴学科具有其自身特点,主要表现为创立时间短、实践性强、发展迅速等。该学科的科研评价标准与体系也在逐步完善与发展,评价体系不仅是反映计算机学科发展的晴雨表,而且会直接影响计算机科研管理和学科建设。
计算机学科既有基础理论性研究,也有应用性研究,很多科研成果具有极强的社会应用功能,以标志性大型系统等普适性应用为主导。比如,国外计算机学科的顶级名校麻省理工学院、加州大学伯克利分校、斯坦福大学等,其科研成果有我们现在广泛使用的UNIX系统或者数据库系统,这成为人类文明的共同财富。国内有国防科技大学所研制的银河、天河系统等。而计算机学科的大部分科研成果(从大型系统到局部创新)都是以论文的形式发表,包括SCI期刊论文和会议论文。因此,计算机学科科研评价指标中的一个重要部分就是论文质量的评价。
反观国际上大部分计算机学科的最新标志性工作都会在顶级会议上。例如计算机网络中最为经典的TCP协议中的拥塞控制算法,首先发表在1988年计算机网络的顶级会议SIGCOMM上。MIT、斯坦福大学等高校计算机系的领军人物的很多开创性工作也发表在计算机领域的顶级会议上。从目前发表的论文数量看,在多个世界一流名校中计算机学科很多学者的研究成果由80%的会议论文和20%的SCI期刊论文构成。
国际计算机领域的特点是追踪顶级会议,发表顶级会议论文。第一,计算机学科很多高水平的期刊一期只能登刊十几篇论文,有的期刊甚至只有三四篇论文。与之相比,计算机领域的大部分顶级会议是每年一次,部分会议也有隔年一次。这些会议每年录用三四十篇论文,或者20篇左右的论文。因此,计算机学科高水平的期刊和会议的规模都是非常有限,论文录用率很低。第二,大多数正规的会议论文需要经过4个以上审稿人进行双向匿名评审,并且还要组织会议的程序委员会对投稿论文专门召开会议进行讨论。因此,会议论文相比期刊论文具有发表周期短、有较好学科科研前瞻性等优势。第三,中国科研评价体系还是以SCI期刊论文为主,顶级会议论文并不为其他学科科研工作者所关注。2006年法国巴黎大学陈钢博士的研究发现作为第一作者的中国大陆学者在历年国际计算机学会(ACM)权威会议发表的论文仅占总量的0.83%[12],半数以上ACM会议上没有中国论文的声音,反映出中国计算机学科大部分工作还处于内循环时代,未能较好地与国际学术界接轨。因此,对会议期刊的忽视不仅阻碍了国内计算机学者的科研动力,也严重地影响到中国计算机学科在国际上的影响力与声誉。
三、优化科研评价体系的路径根据计算机学科的特点,结合对中国科研评价现状与问题的理性分析,在科研评价体系中应完善SCI标准、重视顶级会议的重要性,才能形成科学的科研管理体系,为科学研究发挥更具针对性、更符合现实的价值导向作用。美国教育家斯塔费尔比姆指出:“评价的目的不是为了证明,而是为了提高科研水平。”[13]只有不断完善计算机学科的科研评价体系,才能更好地促进该学科快速发展。
(一)重视顶级会议论文,平衡评价体系标准
面对计算机学科在国际和国内的评价制度之间越来越明显的差异,以及目前国内计算机学科实行的“SCI标准”体系所存在的弊端,中国计算机学会率先进行了反思。2005年,中国计算机学会举办了主题为“从SCI反思中国的学术评价体制”的YOCSEF论坛。论坛上李国杰认为片面地追求SCI数量的做法不可取,呼吁要重视顶级国际学术会议上[14],并撰文《要高度重视在顶级国际学术会议上》在国内积极倡导标准与国际接轨[15]。2010年,中国计算机学会《中国计算机学会推荐国际学术会议和期刊目录》(以下简称《目录》,可以供国内高校和科研单位作为学术评价的参考依据,并期望能起到推动国内计算机领域学术进步的作用[8]。
教育部2012年采用该《目录》作为计算机科学和软件工程评估的指标之一,受到科研人员和管理部门的重视,改变了长期以来计算机学科学术评价不重视会议论文的传统,为提高中国计算机学科基础研究水平作出积极贡献,促进学科特点的认同,规范了会议期刊,促进了论文水平的提升[16]。据包云刚初步统计结果显示:中国大陆学者发表的论文数已经占到ACM会议论文总数的2.7%,2006年以后则占到了4%,与2006年前的数据(0.8%)相比取得了长足进步[17]。
总之,“SCI标准”仍然是国内评价科研成果的主要标准,但伴随着国际计算机学科科研评价体系的影响以及国内相关科研组织的发声,国内不同高校或科研院所对计算机学科科研成果的评价在逐步推动,重视SCI期刊论文的同时,重视顶级会议论文的重要性,逐步平衡评价体系中不同评价指标的权重。
(二)依据计算机学科特点,完善“SCI”评价俗
计算机学科不同于其他自然学科,学科内部差别较大,难以进行横向比较。计算机理论领域以数学分析论证和推导或者算法改进为主,研究周期短;计算机系统或者应用领域,需要研发实用系统,并有真实的数据验证,研究周期比较长。但是,《国际学术会议和期刊目录》在评价标准方面忽略了不同领域的特点,计算机学会推荐的A类会议CVPR一次录用论文约400多篇,而SIGCOMM仅录用30~40篇论文。因此,在科研评价中不仅要关注计算机领域的特点,还要充分考虑不同领域之间的差异性,才能更好地搞好计算机学科的科学研究管理工作[18]。
(三)加强自身评价体系的宣传
计算机学科的科研评价体系是为学科发展提供科学的决策依据,能够推动科研水平和科技发展创新,计算机科研工作者应加强自身专业特殊性的宣传,提升各行业领域对计算机学科成果特殊性的认知和重视。科研管理人员应合理界定科研目标、科研评价目标,在科研管理过程中逐步形成科学的评价理念,推动科研评价的科学化,在项目评审、职称评定、奖项设置、成果应用等工作中,加强对教师学科认知的引导,提高会议论文认定的等级,发挥评价体系的导向性作用[19]。应强调科研论文的质量,注重营造科研的氛围,不将SCI、会议期刊作为主要依据,努力改变和其他学科成果认定一视同仁的做法。同时,建立全面的会议宣传及参会激励机制,加大对科研工作者参加顶级会议的支持力度,鼓励将优秀学术成果提交到顶级会议。
(四)结合学科特点,完善科研评价管理制度
客观、公正的科研评价制度事关广大科研工作者的切身利益,是学术得以健康发展的基石,也是保障科技管理工作正常运转的前提。在对计算机学科进行科研评价时,应当针对当前存在的主要矛盾,采取相应的政策和措施加以解决:第一,按专业领域制定相应的科研评价标准。科研评价指标会受到评价方法、评价目的、评价对象等多方面因素的影响[2022]。与物理、化学类专业截然不同,计算机类专业对应的科研成果评价标准应有所差别。第二,重视会议论文的学术影响力。计算机学科的顶级会议文章采用“双盲”评审,每篇文章历经“先通讯评审再会评”的常规程序,录用率低,通常不到20%,每篇文章或被录用或被拒绝,没有修改机会。若论文被顶级会议接受,很大程度上能彰显其科研实力。而且,计算机学科的最新研究成果主要发表在顶级会议上。更有甚者,计算机学科的领军人物仅将研究成果发表在顶级会议上,如MIT的Katabi教授。第三,制定科学的科研评价指标。科研评价标准本身也是一个动态适应、不断完善的过程,指标设置合理会促进评价结果的科学性和权威性。高校的科研成果不是靠简单的指标“抓”出来的,要遵循整体性、公正性、战略性、操作性等原则[22]。科研管理部门要更多地在“搞好服务”方面下功夫,为本单位科研工作制定更为有效的激励制度,为科研人员创造工作条件、排忧解难等。论文的具体评价应综合考虑论文的自身价值、同行专家的评议结果与科研管理专家的判断。
四、实例验证高校自身特点也决定了科研评价工作的特点,后者对前者及其教师有着很强的导向性,不同类型的高校、不同学科之间应当采用不同的评价方法和评价标准。基于其职能与不同侧重点,中国589所本科院校被《中国大学评价》课题组分为研究型、研究教学型、教学研究型和教学型4类,占比分别为6.83%(40所)、15.87%(93所)、23.89%(143所)和53.41%(313所)[23]。
某大学作为一所综合性重点高校,从2015年起试行“一院一策”管理体制,从科研角度看就是要充分发挥二级学院教学科研和办学的主体地位,试图根据不同学科特点分类考核、分类指导,制定与学科性质相适应的科研评价标准体系和差异化考核指标,实行学科间单独考核,充分尊重教师个体差异,尊重不同学科科研人员的成果价值,营造宽松的研究氛围,激发各个学科的科研活力。具体举措包括:第一,依据专业领域拟定同行专家评价认可的期刊与会议列表。鉴于计算机学科顶级期刊文章与顶级会议文章的数量在一定程度上皆可反映其国际影响力,同时不断加大奖励顶级期刊文章与顶级会议文章的奖励力度。第二,规范期刊文章与会议文章的量化指标。计算机学会推出了“CCF推荐A/B/C类会议”“CCF推荐A/B/C类期刊”列表。“CCF推荐A类会议”是计算机学科最具难度的标志,越受推崇的顶级会议论文接受率越低,发表难度越大,我们在评价体系中予以高度认可。为了简单有效地推进科研评价,我们尝试将“CCF推荐A类会议和期刊”与JCR/SCI一区期刊相对应,“CCF推荐B类会议和期刊”与JCR/SCI二区期刊相对应,“CCF推荐C类期刊”与JCR/SCI三区期刊相对应。“CCF推荐C类会议”等同视为JCR/SCI期刊。第三,综合衡量学术论文的学术价值和文献价值。基于论文所发表期刊的影响因子、平均被引次数、当年指数等指标,全方位衡量其学术价值。这些举措将有效避免学术评价中“一刀切”现象。一方面使科研评价更具规范性,对期刊论文和会议论文的学术价值进行合理量化;加大会议论文,尤其是计算机学科会议论文的支持力度,增加科研活动经费,资助教师与有潜力学生前往顶级会议借鉴学习,提升教师的科研素养;加强国际和国内高校的学术交流与合作。另一方面也符合计算机学科的研究规律,对后期计算机科研成果评价具有指导性作用。
另外,某大学的科研评价体系是建立在与国际、国内同行论证的基础之上,向国际一流院校看齐的自主制定考核指标。特别是计算机学科,在中国计算机学会制定的论文标准基础上,有分类地加以适用,引导该学科与国际化接轨,走国际化发展道路,并取得显著成绩。2011年该大学计算机学科并没有A类论文,而到2017年初已录用和发表8篇,这对于一所综合性高校是长足的进步。
五、结语SCI论文和顶级会议对于计算机学科的发展都起着举足轻重的推动作用,SCI侧重基础,研究比较深入,而顶级会议时间快,信息量大,对学科发展的导向作用比较明显。科研管理应结合学科的特点,重视SCI期刊论文的同时,也应当重视顶级会议论文的重要性,发挥制度的导向作用。同时,科研部门都应根据学科特点,制定符合并推动学科发展的科学评价体系,激励引导研究人员参加科学研究,提高其积极性和创造性,使相关学科的科研评价系统制度化、规范化,进一步推动学科和学术科研的发展。
参考文献:
[1]滕颖,蒋新.对我国学术论文评价体系的几点思考[J].无锡教育学院学报,2005(1):9395.
[2]王倩.h指数及其衍生指数在评价学术会议中的应用研究[J].科技情报开发与经济,2015(15):135139.
[3]尚海茹,冯长根,孙良.用学术影响力评价学术论文――兼论关于学术传承效应和长期引用的两个新指标[J].科学通报.2016(26):28532860.
[4]梁耘.学术论文评价工作模式研究[J].湖北汽车工业学院学报,2005,19(2):7880.
[5]孙君,闫雅娜.EI与科技论文收录[J].情报探索,2006(6):4748,16.
[6]任火.SCI评价及其对策[J].中国出版,2002(1):4142.
[7]王汉澜.教育评价学[M].开封:河南大学出版社,1995.
[8]李志河.我国高校教学科研人员绩效考评研究[M].北京:科学出版社,2012.
[9]刘在洲,徐红,陈承.高校科研质量评价标准研究[M].北京:科学出版社,2015.
[10]刘恩允.高校科研评价的问题与对策[J].高等工程教育研究,2004(1):3942.
[11]彭兰,唐慧君.构建高校科研内部评价体系之思考[M].黑龙江高教研究,2005(2):6870.
[12]陈钢.从ACM会议分析我国计算机学科近十年发展情况[J].中国计算机学会通讯,2015,11(10):4251.
[13]瞿葆奎.教育学文集・教育评价[M].北京:人民教育出版社,1989.
[14]谭英.从SCI反思中国的学术评价体制――中国计算机学会YOCSEF论坛综述[J].中国计算机学会通讯,2005,1(2):7579.
[15]李国杰.要高度重视在顶级国际学术会议上[J].中国计算机学会通讯,2006,2(5):93.
[16]梅宏.中国计算机学会《国际学术会议和期刊目录》得失谈[J].中国计算机学会通讯,2015,11(7):3642.
[17]包云岗.CCF《国际学术会议和期刊目录》得大于失[J].中国计算机学会通讯,2015,11(8):3842.
[18]杜伟锦.高校科研评价现状与完善途径探析[J].高等教育研究,2004(4):6164.
[19]毛娜.浅议高校科研评价制度创新[J].黑龙江教育:高教研究与评估版,2008(C2):183185.
[20]曾玉清.高校科研产出评价方法及应用研究[J].湖南社会科学,2006(4):201204.
[21]杨瑞仙,梁艳平.国内外高校科研评价方法比较研究[J].情报杂志,2015(9):107110.
上一篇:地理信息数据获取方法(6篇)
下一篇:电力企业科技创新范例(3篇)
热门推荐