六年级数学(精选6篇)
时间:2023-06-15
时间:2023-06-15
11月14日上午,在短短的半天时间里,观摩了西宁市城北区朝阳小学骨干教师翟丽萍老师在河阴小学上的示范课,听了这些专家的课,使我更深刻地感受到了名师课堂教学的生活化,艺术化。
我把个人的一些心得体会总结如下:
1、多媒体的大量运用
数学课堂上运用课件目的一方面是为了节省时间,二是直观形象展示给学生。这次的课件制作水平都很高,而且使用效果好,克服以前课件华而不实的现象。看的出都是老师们精心准备的。课件只是教学的辅助手段,是在手动不能实现的条件下化抽象为直观形象,为突破难点服务,所以适度地发挥多媒体的作用是很好的。
2、创设的情境真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。在创设情景时,要和实际生活联系起来,而不是为了创设情景而创设情景。”在今后的教学工作中一定要发扬成绩,找出教育教学方面的差距,向教育教学经验丰富的老师学习,教坛无边,学海无涯,在以后的教学中,以更加昂扬的斗志,以更加饱满的热情,全身心地投入到教育教学工作中。
3、体现主动性学习,重视学生的动手操作。
智慧之花开在孩子们的手上。我们老师重视孩子的动手操作,重视孩子的手脑结合,俗话说:心灵手巧。要学好知识就是要孩子们主动地参与到学习活动中来,那么动手操作就是孩子们最好的学习活动。孩子们在老师的指导下,动手操作,自主探究,合作交流的学习知识名家的课。
从事农村教育的我,感触多多在今后教学中,我要继续学习业务知识,让农村的孩子走出农村,争取与城市孩子无差异,但我知道,这需要我付出很多,但是我愿意,我愿意为农村教育付出我的一切。真正让学生在主体积极参与、操作、交流、动脑、动口的探究性学习中建立概念、理解概念和应用概念。
比例
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1、2:1、5。
10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11、正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12、图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13、实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14、图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
小组合作学习与传统教学形式相比,在教学步骤上有很多共同性,如课前的教学设计、教学过程中的教师小结、巩固练习等;但也有它自己的特殊性。下面仅就特殊性方面谈几点看法:
1、分配学习任务。
在合作学习之前,教师要向学生说明:合作学习的重要性,学习的内容和目标是什么,怎样完成任务,评价的标准是什么。与此同时,教师还要通过创设情境或提出有趣的富有挑战性的问题,激发学生学习的积极性;启发学生善于运用已有知识和经验解决问题,促进学习的迁移。在本学期我在讲《纳税》一课时,我提前一周布置学生自己去查询、收集有关纳税的知识。在上课时,我叫学生汇报自己收集的税务知识,结果学生个个拿出一本打印了厚厚的税务知识来汇报。可想而知,结果只能是学生不能尽兴展示自己的成果,教学任务也肯定不能完成。这就是老师在课前没有预先估计到的结果,因而,没有对学习任务进行合理分配。
2、合作探究。
每个小组明确了学习任务之后,各组根据任务分工进入合作探究阶段,每个学生根据自己的理解互相交流,形成小组的学习成果。期间教师要在组间巡视,针对学习过程中出现的各种问题及时引导,帮助学生提高合作技巧,并注意观察学生学习和人际关系等各方面的表现,做到心中有数。要让学习有一定困难的学生多思考、发言,保证他们达到基本要求;同时,也要让学有余力的学生有机会发挥自己的潜能。此外,老师还应该充分信任学生,相信他们能通过自己的努力能完成,让学生有足够时间和空间进行合作探究。在以往听过一些老师的课,课堂上有这一环节,但往往是一个过场,短短一、两分钟就结束了,根本没有一点实效。
3、全班交流。
让每个小组的报告员代表本组向全班进行学习成果汇报,了解每个小组学习的情况,同时注意了解每个小组学习有困难学生的掌握情况;对于每个小组提出的疑问,可以请其他小组介绍解决办法。全班交流需要老师预先设计好问题要有交流的焦点,交流的问题要有一定的深度,最好是要有一定的可争议性。交流的问题,如果没有深度,则议论不开;如果没有争议性,则议论时也无法有效地展开。另外,交流的目的之一也就是通过交流使得一些有争议的问题得到澄清,使得一些对此问题不理解的学生得到理解。其实这就是教学的难点,因此我要说交流的是难点问题,是最有价值的问题。
学生合作的主要目的之一是在解决问题的过程中促进每个人的发展,培养创新精神、实践能力、解决问题的能力,发展情感态度和价值观;然后才能谈到合作意识和能力的培养。
以上就是我对课堂教学上的一点体会,一点心得。
复习内容:
1、掌握数的顺序和大小,掌握9以内各数的组成。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和9以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
5、初步了解分类的方法,会进行简单的分类。
6、认真作业、书写整洁的良好习惯。
7、通过实践活动体验数学与日常生活的密切联系。
复习目标:
1、理解加、减法的含义,进一步理解和掌握9以内的加、减法,能正确、熟练地口算相关的式题,形成相应的计算技能。
2、在具体的活动中,进一步认识长方体、正方体、圆柱和球,认识上下、前后、左右等方位,能应用分一分、排一排、数一数等方法收集和整理一些简单的数据,培养初步的空间观念和统计观念。
3、在应用所学知识解决简单实际问题的过程中,进一步发展分析问题、解决问题的能力,体会数学在日常生活中的广泛应用,培养初步的数学应用意识。
2、1分数与除法
一般地,两个正整数相除的商可用分数表示,即被除数÷除数=用字母表示为p÷q=(p、q为正整数)
2、2分数的基本性质
1、分数的分子和分母同时乘以一个不为零的整数,分数的值不变
2、分子分母只有公因数1的分数叫做最简分数
3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分
2、3分数的比较大小
1、同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小
2、通分的一般步骤是:
(1)求公分母——求分母的最小公倍数;
(2)根据分数的基本性质,将每个分数化成分母相同的分数。
3、异分母分数比较大小需要先通分成同分母分数再按照同分母分数比较大小
2、4分数的加减法
1、同分母分数相加减,分母不变,分子相加减
2、异分母分数相加减,先通分成同分母分数,再按照同分母分数相加减
3、分子比分母小的分数,叫做真分数
4、分子大于或者等于分母的分数叫假分数
5、整数与真分数相加所成的分数叫做带分数
6、假分数化为带分数:分母不变,整数部分为原分子除以分母的商,分子则为原分子除以分母的余数
7、列方程求未知数的一般书写步骤:
(1)设未知数为x
(2)根据题意列出方程
(3)根据加减互为逆运算,表示出x等于那些数相加减
(4)计算出x的值,并写出上结论
2、5分数的乘法
1、两个分数相乘,分子相乘作为分子,分母相乘作为分母
2、如果乘数是带分数,先化成假分数,再进行运算
2、6分数的除法
1、一个数与其相乘的积为1的数为这个数的倒数;0没有倒数
2、除以一个分数等于乘以这个分数的倒数
3、被除数或除数中有带分数的先化成假分数再进行运算
2、7分数与小数的互化
1、一个分数能不能化为有限小数和分数的分母有关
2、从小数点后某一位开始不断地重复出现前一个或一节数字的无限小数叫做循环小数
3、被重复的一个或一节数码称为循环小数的循环节
4、一个分数总可以化为有限小数或无线循环小数
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
以上就是差异网为大家带来的8篇《小学六年级数学学习心得体会》,希望对您的写作有所帮助,更多范文样本、模板格式尽在差异网。
上一篇:安全驾驶心得(精选4篇)
下一篇:读书心得(精选2篇)
热门推荐