比的意义教案(精选6篇)

时间:2023-07-01

《比的意义》教学设计 篇1

教学内容:

教材第48-49页的内容及相应的“做一做”。

教学目标:

1、理解比的意义,掌握比的读、写及各部分的名称。

2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

教学重点:

理解比的意义,求比值。

教学难点:

理解比和分数、除法之间的关系。

教学过程:

一、创设情境

1、播放“神舟”五号顺利升空课件。

播报:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)

2、提问:我们可以怎样表示它们长和宽的关系呢?

(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。

3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)

二、自学互动,适时点拨

【活动一】比的意义

学习方式:独立自学、汇报交流

学习任务

1、同类量的比。

(1)启发:除了用已经学过的这些方法来表示长和宽的关系外,我们还可以怎样表示这两个数量之间的关系?

(2)自学课本第48页的内容。

(3)长和宽的比是15比10,宽和长的比10比15。

(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。

2、不同类量的比。

(1)出示数据,列式求飞船的速度:42252÷90。

(2)用比来表示路程和时间的关系。

提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)

(3)提问:路程和时间是不是同类的量?

(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

【活动二】比的读写方法和各部分的名称

学习方式:独立自学、汇报交流

学习任务

1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

2、汇报交流:15 : 10 =15÷10 =3/2

前项 比号 后项 比值

3、比值。

(1)什么是比值?怎么求比值?

(2)比值可以怎样表示?(分数、小数、整数)

(3)讨论:比值和比有什么联系和区别?

【活动三】比与除法、分数的关系

学习方式:小组讨论、汇报交流

学习任务

1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

区别:除法是一种运算,分数是一种数,比表示两个数的关系。

2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)

三、达标测评

1、完成课本第49页的“做一做”,集体订正。

2、完成第52页练习十一的第1题。

四、课堂小结

这节课我们一起研究了比,回顾一下你有什么收获。

《比的意义》教案 篇2

教学目标:

〈一〉知识与技能

1、知道通过大量重复试验时的频率可以作为事件发生概率的估计值

2、在具体情境中了解概率的意义

〈二〉教学思考

让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型。初步理解频率与概率的关系。

〈三〉解决问题

在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力。锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念。

〈四〉情感态度与价值观

在合作探究学习过程中,激发学生学习的好奇心与求知欲。体验数学的价值与学习的。乐趣。通过概率意义教学,渗透辩证思想教育。

【教学重点】在具体情境中了解概率意义。

【教学难点】对频率与概率关系的初步理解

【教具准备】壹元硬币数枚、图钉数枚、多媒体课件

【教学过程】

一、创设情境,引出问题

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去。我很为难,真不知该把球给谁。请大家帮我想个办法来决定把球票给谁。

学生:抓阄、抽签、猜拳、投硬币,

教师对同学的较好想法予以肯定。(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法。如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平。能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳。

《比的意义》教学设计 篇3

学习内容

人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

学习目标

1、结合具体情境,通过计算,能说出比例的意义。

2、能应用比例的意义判断两个比能否构成比例。

3、通过观察、比较、小组讨论说出比和比例的区别。

学习重点

比例的意义,应用比例的意义判断两个比是否能构成比例。

学习难点

应用比例的意义判断两个比是否能构成比例。

教学过程

一、复习旧知、导入新课

同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。

二、比较分析,探究新知

1、出示情景图,说一说各幅图的情景。

第一幅:xx前的升国旗仪式

第二幅:学校每周一的升旗仪式

第三幅:教室前面的红旗

第四幅:谈判桌上的红旗

(对学生进行爱国主义教育)

问题:

1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些长和宽是多少吗?

出示国旗的长宽数据。

3:请同学们观察、计算一下,国旗的长和宽的比值是多少?

3板书:2、4:1、6=2360:40=2

4、探求共性,概括意义

师:比较一下,你什么发现?

师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生:用等号(师把左右两个中间板书=)

师:同学们现在用了等号表示出这样一个式子,(板书:式子)谁来说一说这个式子就表示了什么?

生:表示相等的两个比。

生:表示两个比值相等的比

(师板书:比相等)

师:像这样表示两个比相等的式子叫做比例。板书

同桌互相说说

这个就是今天我们学习的——比例的意义(板书:比例的意义)

三、合作探究,进一步理解比例。

1、探索组成比例的条件

师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?

(教师再强调:一定是比值相等的两个比才能组成比例。)

2、寻找比例

师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2、4∶1、6=15∶10 60∶40=5∶ )

3、介绍比例的第二种表示方法

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书: )

4、区分比和比例

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

四、根据意义,判断比例

师:刚刚我们认识了新的式子比例,那要是让你来判断两个比是不是能组成比例,你会怎么办?

生:看比值是不是相等

1、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)

2、试一试,5:8 与1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

3、反馈:

(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。

4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

5、处理做一做第二题。

6、处理练习六第一题。

四、目标检测

1、判断:

(1)、有两个比组成的式子叫做比例

(2)、如果两个比可以组成比例,那么这 两个比的比值一定相等。

(3)、比值相等的两个比可以组成比例

(4)、0、1:0、3与2:6能组成比例

(5)、组成比例的两个比一定是最简的 整数比

2、写出比值是5的两个比,并组成比例。

3、练习六第二题。

4、拓展练习:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?

五、总结

师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

六、板书设计:

比例的意义

操场上的国旗:2、4∶1、6=1、5

教室里的国旗:60∶40=1、5

2、4∶1、6=60∶40 也可以写成

表示两个比相等的式子就叫做比例。

读书破万卷下笔如有神,以上就是虎知道为大家整理的7篇《比的意义教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在虎知道。

教学过程: 篇4

教学内容

人教版小学数学第十一册46页—47页。

教学目标:

1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。

2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。

教学重点:比的意义。

教学难点:比和除法、分数之间的联系和区别。

教学过程:

一、回忆生活素材,导入新课。

师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?

生2:黑板的周长是多少?

生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4

师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)

[评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。

二、充分感知,建构意义1、整理生活素材

师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)

宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?

生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)

2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。

3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。

学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。

师:从这道题你能发现比值的取值范围吗?

生:比值可以是整数,可以是小数,但更多形式是分数。

4、练习①说出下面每个比的前项和后项,并说出比值。

(生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。

[评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。

5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:

比前项比号后项比值

除法

分数

②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。

在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。

(学生情绪高涨,一分钟后陆续汇报。)

生1:(很高兴)四局比赛我赢了,4比0。

生2:我和同伴打平局2比2。

生3:我和同桌的比赛结果是2比3。

……

师板书:4:02:32:20:43:1

生:老师,比的后项不能为0,这里为什么是0呢?

生:比赛中的比和我们今天学的比一样吗?

生:这个2:2可以化简比吗?

(没等我组织学生讨论,就有学生站了起来。)

生:2:2只表示双方各得二分,不表示相除关系,不可以化简。

生:4:0表示对方得0分。

……

师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。

生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。

[评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。

因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。

三、巩固练习:

①、苹果是梨的,苹果与梨的比是():()

②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()

③、400千克与0、2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。

④开放题:选择合适的数量组成比

我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3、5张。

学生回答后讲评。

[评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。

四、小结归纳,应用拓展

全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?

[评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。

课后反思:

《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。

《比的意义》教学设计 篇5

教学内容

方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)

教学理念

新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。

教学策略

本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。

内容分析

方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的核心思想,本课教学内容是学生从算术思维到代数思维的过渡。

教学目标

1、根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。

2、使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。

3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。

教学重点

结合具体情境理解方程的意义,用方程表示简单的等量关系。

教学难点

从算术思维到代数思维的过渡。

教学准备

玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片

教学过程

一、创设情境,抽象出等量关系

(一)依据天平,理解相等,

1、认识天平

同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)

再让学生用自己的身体仿照小猴子的样子来演示一下平衡。如果左边重呢?怎样演示?右边重呢?

2、理解相等

低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)

天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)

能用数学式子表示出来吗?

预设:40+60=100 60+40=100(板书)。

像这样含有等号的式子我们叫它等式。

3、让学生再说几个等式。

(二)依据天平,理解不相等

1、理解不相等

如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)

此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。

让学生用一个数学式子表示。(预设:60<100,100>60 。

刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)

2、让学生再说几个不等式。

(三)依据天平,理解含有字母的等式与不等式

1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?

2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)

3、验证:低视力生协助全盲生操作验证(教师协助)

4、以小组为单位,低视生记录三种状态下的数学式子。预设(60+x=100;60+x>100;60+x

(四)依据心中的天平理解等量关系

1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)

还有天平吗?(预设:没有。)

你心中的天平还有没有?(有)

2、出示课件:

3、低视力生看大屏幕,并叙述图意。

4、思考:用心里的小天平摆放一下:左面放?右面放?此时你的小天平是什么样的状态?说明什么?

5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)

6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)

7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。

二、引导学生给式子分类,抽象概括出方程的意义

(一)式子分类,揭示方程的意义。

1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。

2、学生交流(预设:

1、按是否是等式来分。

2、是否含有字母来分。

3、还有学生把60+x=100,5x=800单分一类)

3、教师揭示:象60+x=100,5x=800就是方程

4、让学生根据这两个式子的特点说一说什么叫方程?

5、教师点题:含有未知数的等式叫做方程

(二)探讨并揭示等式与方程的关系。

1、让学生试着说一说方程与等式的关系。

2、学生交流

3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)

三、巩固拓展、应用概念

刚才我们认识了方程,你能判断什么是方程吗?

1、应用概念,判断方程

判断下面的式子是否是方程。(提问C类学生)

x+5 15+5=20 2x +3>10 36-x=9×3 2、应用概念,解决问题。

(1)课件出示:(提问B类学生)

(2)低视力生看大屏幕,并帮全盲生叙述图意。

(3)谈话:能用方程表示出来吗?(预设:6a=24、6)

(4)追问:6a表示什么?

(5)课件出示:(提问A、B类学生)

教法同上

(6)课件出示:(提问A类学生)

(7)先让低视生说说这幅图的意思?

(预设:1000毫升刚好能倒满2个大杯子和一个小杯子;2个大杯子和1个小杯子的盛奶量就是1000毫升。)(8)找等量关系,并列出方程

(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。

四、回顾反思 总结提升这节课你学到了什么?

(结合学生的回答,小结)

五、作业:

(1)练习十一第一题

(2)根据今天学习的知识,编一个关于方程的数学故事

教学内容:苏教版四年级(第八册)教学目标:

(1)使学生理解方程概念,感受方程思想。

(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

《比的意义》教学设计 篇6

教学内容

课本43-44页以及相关练习

教学目标:

1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

教学重点:

理解比的意义以及比与除法、分数的关系

教学难点:

弄清比和比值的联系和区别。

教学准备:

课件,投影。

教学过程:

一、创设情境,生成问题

师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)

问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)

小结:长和宽的倍数关系可用除法表示。

二、探索交流,解决问题

1、比的意义

(1)两个同类量的比

比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)

(2)两个不同类量的比

“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

(算式:42252÷90,依据是速度可以用路程÷时间表示)

对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)

(3)归纳比的意义。

通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

2、比的写法

(1)阅读课本自学

问题:几比几怎样写?怎样读?

比的各部分名称是什么?

怎样求比值?比值可以怎样表示?

比和比值有什么联系和区别?

(2)小组交流汇报。

3、比、除法和分数的联系

(1)比与除法的关系

问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?

小组交流汇报。

(2)比与分数的关系。

根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母★WWW、HUZHIDAO、COM★,比值相当于分数的值。)

三、巩固应用,内化提高

1、完成课本“做一做”。

2、练习十一第1、2题。

四、回顾整理,反思提升

通过这节课的学习,你有什么收获?

课后延伸:

在生活中找一找,在哪里存在比?表示什么含义?

板书设计:

比的意义

15:10=15÷10=3/2

前项比号后项比值

更多范文

热门推荐