六年级数学教案《比的应用》(整理9篇)

时间:2024-01-12

六年级数学教案《比的应用》篇1

【教学目标】

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

【教具准备】

课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

课上准备:有关课件、黄、蓝色颜料、量杯等。

【教学重点】

理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

【教学难点】

理解按比分配的实际意义,沟通比与分数之间的联系。

【教学实录】

一、情境导入

师:同学们,作为一个大连人,你熟悉自己的家乡吗?大连给你留下最深的印象是什么?谁能用简短的一个词来概括。

生1:我最喜欢大连的星海广场。

师:你对大连的星海广场印象最深。还有吗?

生2:大连的海。

生3:大连的草坪。

师:今天,老师也给同学们带来了几幅大连的风光图片,咱们一块来看一看。

(放投影,出示大连的星海广场等图片,学生情不自禁地说出地点。)

师:看了这些风光片之后,你还有什么新的感受?谈谈你的感想。

生:这些图片大部分都是绿色,给人一种朝气蓬勃、心旷神怡的感受。

师:如果咱们把这些画面画下来,你认为主色调应该是什么色?

生齐:绿色。(师板书:绿)

师:绿色充满了生命的活力。孩子们,知道绿色是怎么调配出来的吗?

生:知道,是黄色和蓝色调配出来的。(师板书:黄+蓝——)

【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

二、实验操作

1、动手操作,调配绿色

提前给每组准备了蓝色和黄色颜料,一个小量杯,二个大量杯,大量杯上贴上组号。

师:老师给每组都准备了黄色和蓝色两种颜料,等会,你就可以用这两种颜料调配出你最喜欢的绿色来。在调配之前,先听老师说要求:在调配之前,组内先商量好想用多少ml的蓝色和黄色,记录好数据之后再开始调配。我们用小量杯来量取颜料,倒入大量杯进行调配。听清楚了吗?

生:听清楚了。

师:现在各小组可以调配了。

学生开始操作,由小组长进行分工,一人记录,一人操作,一人负责传递器材、搅拌颜料,还有一个人负责卫生工作。

师:调好的小组请组长将颜色放到前面来,并把数据记录在黑板上。

将调配好的绿色按组序一字排开,量杯上标明组号,学生能清楚地看到各组调配出来的颜色。

师:老师想请一个小组的组长汇报一下你们用了多少ml的蓝色和多少ml黄色。

生:我们第四小组用了100ml的黄色和60ml蓝色调配出了一种绿色。

师:咱们再看看其他组的数据。

【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的`应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

2、观察发现,得出结论

(1)观察。

师:孩子们,结合这些数据,再观察这些绿色,你有什么发现?

生1:我发现黄色越多,调出来的绿色越浅;蓝色越多,调出来的绿色越深。

生2:各组调出来的绿色都不一样。

师:咦,咱们都是用黄色和蓝色来调,为什么调出来的绿色有深有浅呢?

有个别学生举手了。

师:不少同学有想法了,把你的想法在组内跟小伙伴们交流交流。(学生讨论)

生1:我发现每个组用的黄色和蓝色不一样多,调出来的绿色深浅也不一样。

师:还有其它的想法吗?生2:黄色与蓝色的量不一样,所以它们的比不一样。

生3:我认为蓝色和黄色的比不一样,所以调出来的颜色就不一样。

(2)得出结论。

六年级数学教案《比的应用》篇2

教学目标:

1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的数学思想。

教学重点:

理解比的基本性质,掌握化简比的方法。

教学难点:

掌握化简比的方法。

教材分析:

比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。

学情分析:

学生在以前的学习中,已经掌握了商不变的'性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想验证应用,让学生理解比的基本性质,应用性质化简比。

教学过程:

活动一

出示例1,出示例2,让学生解答。

教学比例的基本性质

1、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的关系验证。

②根据比值验证。

③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?

活动二

教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

根据你自己的理解,能说一说什么是最简单的整数比吗?

(前项和后项是互质数。)

请同学们解答的例1

(1),这两个比是最简比吗?让学生试着化简比。

让学生试做后,总结方法。

出示例1

(2)①1/6:2/9②0.75:2

学生先讨论方法,再试做。

小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

化简比与求比值有什么不同?

六年级数学教案《比的应用》篇3

教学目标

1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。

2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。

3、树立用自己学来的知识帮忙解决问题的意识。

教材分析:

这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。

学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学过程

活动一

1、课前调查

奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?

牛奶是红茶的`2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。

2、实际操作

要配置220毫升奶茶,需要多少牛奶和多少红茶?

学生讨论,研究不同算法。

解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml

解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml

讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。

学生配置奶茶,共同品尝。

活动二

1、教学例2

书上例2,列式计算

2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。

活动三:

1、请帮忙配糖:

一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)

3、帮刘爷爷收电费

刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?

住户王家张家赵家李家

分电表度数40382953

3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?

4、总结全课

比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

六年级数学教案《比的应用》篇4

教学内容:

义务教育课程标准小学数学六年级上册第三单元《比的应用》

教学目标:

1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。

教学重点:

掌握按比分配应用题的结构特点和解题思路。

教学难点:

正确分析,灵活解决按比分配的实际问题。

教学准备:

教学课件

教学过程:

一、以玩游戏的形式问题导入

邀请2名男同学和4名女同学到前台演示,其他同学注意观察,老师将事先准备好的6张凳子平均分给男同学3张,女同学3张,很明显,女同学人数较多,就会有人没凳坐,男同学人数少,就会有多余的凳子,因此,刚才老师这样分,合理吗?那要怎么分才合理呢?这就是我们今天要探讨的新内容。(板书:比的应用)

二、讲授新课

1、利用课件出示分橘子给幼儿园大班和小班的问题。

(1)学生看图文,弄清图文意思。

从屏幕上我们可以看出,这位幼儿园的老师想干什么?(分橘子给小朋友)

(2)引导学生找出图中所提供的数学信息。

从图中可以知道,老师要分什么?有多少?分给谁?怎么分?

(3)让学生帮这位老师找出合理的分配方法。并写在练习本上,如何找?给两点提示:

①可以从数学书上的'相关内容悟出解决办法,

②可以与前后左右的同学讨论,得出解决办法。(要求:动作要快,思考要细,声音要小,方法要灵)

(4)结果出来后,让学生主动到台前汇报,并说出分配方法。这时,其他同学要认真听汇报,并分析判断汇报人的方法好不好?合不合理?数量对不对?

(5)汇报完毕,老师结合学生的解题方法,课件展示两种方法。接着提示学生要学会检验,检验是判断答案对错的好方法,所以要养成自觉检验的良好习惯。

(6)出示课件,集体总结按比分配问题完成新课前分凳子的游戏。

2、教师小结:按比分配的应用题怎样解答?

解题方法(教师只作口述,不作板书)。

教师小结:凡具备上述结构特点,我们就可以用这些方法来解答。

三、基本练习

1、出示课件练习:填一填

2、课件出示与联欢会有关的习题,在学生理解题意的基础上,用自己喜欢的方法解决,后集体订正。

四、巩固提高

3、课件出示建筑相关的习题,理解题意,引导学生根据前面的知识类推,用前面的方法解答。鼓励学生用不同的方法独立解决,并引导学生自行检验。

五、课堂总结

学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

六、布置作业。

练习十三第1、4题

六年级数学教案《比的应用》篇5

教学内容:

教科书第12页及做一做中的题目,练习一的第1、2题。

教学目的:

使学生了解有关利息的初步知识,知道本金、利息、利率的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:

将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

如果你家中有一些暂时不用的钱,将怎么办?让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

为什么要把钱存入银行呢?多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

你们知道利息是怎样计算的吗?

教师:今天我们就来学习一些有关利息的知识。

板书课题:利息

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有存定期一年表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是定期年,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:存入银行的钱叫做本金存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:取款时银行多付的钱叫做利息

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:利率就是利息与本金的'比值这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?

提问:

二年期的定期整存整取的年利率是5.94%是什么意思?(到期取款时每100元可得5.94元的利息。)小丽的本金是300元,到期时她每一年应得利息多少元?(300元的5.94%。)学生口述,教师板书:3005.94%。

二年应得利息多少元?学生口述,教师接着板书:2小丽的存款到期时可以得到的利息是35.64元。

想一想,存款的利息应该怎样计算呢?先让学生说一说,教师再板书:利息=本金利率时间

小丽的存款到期时,她可以取出本金和利息一共多少元?(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习

做第2页做一做中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

四、作业

练习一的第1题。

六年级数学教案《比的应用》篇6

教学目标:

1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:

进一步掌握按比例分配应用题的结构特点和解题思路。

教学难点:

正确分析解答比例分配应用题。

教学过程:

一、复习。

1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,xxx(补充问题并解答)

二、新授。

1、教学例2。

(1)出示例2:

(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的.体积按1:4进行分配。)

(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)

①稀释液平均分成的份数:1+4=5

浓缩液的体积:500×=100(ml)

水的体积:500×=400(ml)

答:稀释液100ml,水400ml。

(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

2、补充练习

(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答:

①三个班的总人数:47+45+48=140(人)

②一班应栽的棵数:280×=94(人)

③二班应栽的棵数:280×=90(人)

④三班应栽的棵数:280×=96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)学生进行检验。

(6)学生试做“做一做”中的第2题。

三、巩固练习。

练习十二的第1、3题。

四、布置作业。

练习十二第2、4、5、6、7题。

教学反思:

本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。

六年级数学教案《比的应用》篇7

一、创设情境:

1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?

2、请同学们想一想:你认为怎么分合理?说一说你的分法。

二、探究新知

1、出示题目:这筐橘子按3:2应该怎样分?

(1)小组合作(用小棒代替橘子,实际操作)。

(2)记录分配的过程。

(3)各小组汇报:自己的分法。

大班小班

3个2个

6个4个

30个20个

............

2、出示题目:如果有140个橘子,按照3:2又应该怎样分?

(1)小组合作。

(2)交流、展示。

(3)比较不同的方法,找找他们的`共同点。

方法一:

大班小班

30个20个

30个20个

............

方法二:画图

140个

方法三:列式

3+2=5

140=84(个)

140=56(个)

答:大班分84个,小班分56个,比较合理。

(还会出现用整数方法来列式计算的。)

3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。

三、巩固新知。

完成课本第55页:

1、独立试做:试一试

2、独立试做练一练的1题、2题,3题抢答,并说明理由。

四、知识拓展:

数学故事。(共同探讨方法)

五、总结:

1、学生看书总结本节所学内容。

2、提出自己还有些疑惑的问题。

六年级数学教案《比的应用》篇8

教学内容:

课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

教学重点:

学会找单位1

教学难点:

依题意画出线段图

教学目的:

1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2.培养学生分析能力,发展学生思维。

教学过程:

一、复习

1.先说下列各算式表示的意义,再口算出得数。

2.列式计算。

(1)20的是多少?

(2)6的是多少?

让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

二、新授。

1.教学例1。

出示例1:学校买来100千克白菜,吃了,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示100千克白菜。

吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

教师边说边画出下图:

(3)分析数量关系,启发解题思路。

引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

(4)学生列式计算:=100(20)?=80

(5)再让学生分析一下数量关系。

(6)练一练:

评讲订正时,让学生分析一下数量关系。

2.教学例2。

出示例2:小林身高米,小强身高是小林的,

小强身高多少米?

(1)明确题意,指名读题,说出条件和问题。

(2)让学生画出线段图并标明条件和问题。

①要画几条线段表示题里的数量关系?

②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的`长度代表小强的身高。

教师边启发边画出如下线段图:

(3)分析数量关系,启发解题思路。

启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

(4)让学生列式计算。

(5)如果把上题改成下面的题:

小强身高米,小林身高是小强的倍,小林身高多少米?

问:哪条线段画得长一些?怎样画?

把谁看作单位1为什么?

怎样列式?

教师边启发边画出如下线段图:

(6)教师说明:

一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

指出:在这种情况下乘得的积大于原来的被乘数。

(7)做一做。

完成课本14页做一做的第3题。

三、巩固练习

1.完成课本第14页做一做的第3题。

学习列式计算后,指名让学生分析数量关系。

2.完成练习四的第5题。

说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

订正时指名分析。

四、全课小结。

今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

五.作业。

练习四的第1~4题。

六年级数学教案《比的应用》篇9

教学目标

使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。

教学重难点

运用比的知识解决实际问题。

教学准备

教学过程设计

教学内容

师生活动

备注

一、基本训练

二、应用题练习

三、小结

四、作业

1、口算

练习1310

2、说出下面每句话的具体意思。

一本书,已看页数和剩下页数的比是2∶1。

苹果筐数和橘子筐数的比是3∶4

一个长方形长和宽的比是5∶3

男生与全班人数的比是4∶9

要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。

3、用比表示下列数量之间的关系。

合唱组人数是美术组的3倍。

大米袋数是面粉的`1.5倍。

公牛头数是母牛的1/3

摩托车辆数是自行车的2/5。

1、解答应用题

配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3。要配制240千克这种黑火药,需要三种原料各多少千克?

上下练习;

问:已知什么,要求什么?这是什么应用题?关键是什么?

2、练习1311

问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?

要下求什么,再求长和宽?

上下练习。

3、练习1313

明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?

学生口述后解答。说想法。

能把(2)改编成分数应用题吗?

练习131213

课后感受

同学们能运用比的知识解决实际问题.

更多范文

热门推荐