七年级数学教案:有理数的除法(整理8篇)
时间:2024-10-11
时间:2024-10-11
一、教材分析
1、教材地位和作用
有理数除法是人教版七年级数学第一章《有理数》中的第四节的第二小节内容,是继有理数的加法、减法和乘法之后的又一种运算。学习有理数除法对学生解决生活中的实际问题带来了简便,使学生体会到学习有理数除法的必要性和现实意义,为后面学习有理数的混合算奠定了很好的基础。
2、教学目标
(1)知识与技能目标:了解有理数除法的意义;经历有理数的除法法则的过程,会熟练进行有理数除法运算。
(2)过程与方法目标:通过有理数除法法则的导出及运用,让学生体会转化思想;培养学生运用数学思想知道数学思维活动的`能力。
(3)情感态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益。
3、教学重点与难点
重点:正确运用法则进行有理数的除法运算。
难点:根据不同的情况选取适当的方法求商。
教学思想:转化思想
二、学生情况分析
学生在学习本节课前对有理数数的加、减、乘法运算以及相反数、绝对值相关概念较为熟悉且具有一定的观察、动手操作、合作交流能力,已初步具有一点分析归纳概括的能力。
三、教法与手段
采用“观察——猜想——验证——类比——归纳”的教学模式,营造可探索的环境,引导学生积极参与,掌握规律,主动地获取新知识。利用多媒体辅助教学,充分调动学生学习积极性,体会转化的数学思想。
四、学法指导
本节主要指导学生自主探究——合作交流——主动总结——自我提高。改变学生被动接受的学习方式,倡导学生自主参与,积极互动,主动地获取新知识,培养学生观察、归纳等数学能力和转化的数学思想方法。
五、教学过程
1、引入新课.
我们在前几节课中学习了有理数的乘法运算,并认识了有理数的倒数,那大家知道乘法的逆运算是什么?该如何进行有理数的除法运算,这就是本节课我们学习的内容.引入新课,在黑板上写下课题:有理数的除法
2、温故而知新
(1)多媒体出示:倒数的定义你还记得吗?(指名回答)
(2)多媒体出示:你能很快地说出下列各数的倒数吗?以表格形式出现
计算(﹣4)×(﹣2)=??3×(﹣5)=学生很容易做出。接着出示两道除法运算,计算8÷(﹣4)=(﹣15)÷3=通过学生观察上题,猜想并验证,根据上面乘法运算的结果,也很容易得到答案。再用类比的方法得到另一道题答案。接着给出两组比大小,观察上面三个式子,你有什么发现吗?在这安排一个学生活动,引导学生观察,发现并总结得出结论:把除法运算转化为乘法运算,并及时提问如何转化的,得到除以一个不为0的数,等于乘这个数的倒数。多媒体出示有理数除法法则:文字形式,学生读一遍。并出示数学表达式,强调0不能作除数。(3)温故而知新:提问乘法法则并出两道乘法运算题
(4)多媒体出示例题两道,重在用法则,接下来安排9道练习,安排一个活动,学生在做中发现有理数除法运算符号法则,以填空形式出示。在安排两道例题,是学生在做中总结,什么时候用第一个法则,什么时候用符号法则较为简单,训练观察,归纳的能力.后面是6道填空、3道选择综合训练
3、课堂小结:谈谈我们的收获,从我学会了,我明白了等方面
4、作业:课本38页4、6
六、评价分析
1、合理选用教学素材,利用多媒体辅助教学,优化教学内容。
2、注意创设情境,引导学生探究,使其充分感受和体验知识的产生和发展过程。
3,注重了转化、类比等数学思想方法的渗透
4、对知识的迁移拓展,培养了学生的探索和创新能力,使每位学生得到不同程度的发展。
一、教学目标
知识与技能:
①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:
①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力
情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法中的符号法则。
三、教学过程
(一)创设问题情景,激发学生的求知欲望,复习旧知,导入新课
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法,同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?
如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=3×4=12㎝
乙水库水位的`总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12㎝引出课题:有理数的乘法
(二)学生探索新知,归纳法则
学生分为四个小组活动,进行乘法法则的探索
设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:
(1)向右爬行,3分钟后的位置?
(2)向左爬行,3分钟后的位置?
(3)向右爬行,3分钟前的位置?
(4)向左爬行,3分钟前的位置?
(学生思考后回答)要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1)情形一:蜗牛在现在位置的右边6㎝处。式子表示为:
(+2)×(+3)=+6
数轴表示如右:
(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为:(-2)×3=-6
数轴表示如右:
(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为:(+2)×(-3)=-6
数轴表示如右
(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为:(-2)×(-3)=+6
数轴表示如右:
仔细观察上面得到的四个式子:
(1)(+2)×(+3)=+6
(2)(-2)×3=-6
(3)(+2)×(-3)=-6
(4)(-2)×(-3)=+6
根据你对乘法的思考,你得到什么规律?
(三)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=()同号得
(-)×(+)=()异号得
(+)×(-)=()异号得
(-)×(-)=()同号得
b.任何数与零相乘,积仍为。
(四)师生共同用文字叙述有理数乘法法则。
归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
(五)运用法则计算,巩固法则。
例1计算:(1)(-5)×(-3);(2)(-7)×4;(3)(-3)×9;(4)(-3)×(-)
引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.
例2.见课本P30页
(六)分层练习,巩固提高。
(1)计算(口答):
①②③④
⑤⑥⑦⑧
四、课题小结
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算:先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
教学目标
1、理解有理数除法的意义,掌握有理数除法法则一,会进行有理数除法运算。
2、通过有理数除法法则的导出及运算,让学生体会转化思想,培养学生新旧知识联系的思维能力。
3、通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性。
通过新旧知识的联系,激发学生的求知欲望。
教学重点
有理数除法法则
教学难点
(1)商的符号的确定
(2)0不能作除数的理解。
教学过程
两段式设计的'基础:可以运用学生学习有理数减法法则时用过的方法对推导除法法则的正迁移作用
一、从学生原有认知结构设计问题
1、计算:4×(-2);(2)-3×5;(3)(-2)×(-5)。
2、已知乘积和一个因数,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算,今天我们就来探求有理数的除法应当怎样进行?
二、学生预习问题的设置
议一议:
(1)对于除法运算(-8)÷(+4),你能用乘法的知识求出商来吗?如果能,所得的商应是什么数?
(2)请你举出更多有理数除法的例子试一试。举出4个例子。
(3)你能由此归纳出和有理数乘法法则相国类似的有理数除法法则吗?
三、学生课堂交流阶段
1、组内交流
2、小组汇报
四、教师总结
由此得到有理数除法的法则(一):
1.同号两数相除得正,异号两数相除得负,并把绝对值相除;
2.0不能做除数,0除以任何数都得0。
教师在总结中要对这种逆运算的关系进行强调,
因为4×(-2)=-8,所以(-8)÷(+4)=-2;
同样-3×5=-15,15÷(-3)=5.
今天我说课的内容是:人教实验版教材《义务教育课程标准实验教科书》七年级(上),第一章有理数第四节有理数的除法第二课时p36页例9。
一、教材
1、教材的地位和作用
本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。
2、教育目标
(1)知识与能力
①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。
②培养学生的观察能力、分析能力和运算能力。
(2)过程与方法
培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。
(3)情感态度价值观
通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。
3、教学重点和难点
重点和难点是如何利用有理数列式解决实际问题及正确而合理地进行计算。
二、教法
鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。
三、学法指导
本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。
四、师生互动活动设计
教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。
五、教学程序
(课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?
师生共析:认真审题,观察、分析本题的问题共同回答以下问题:
1、年哪几个月是亏损的?哪几个月是的盈利的?
2、各月亏损与盈利情况又如何?
3、如果盈利记为“”,亏损记为“-”,那么全年亏损多少?盈利多少?
4、你能将亏损情况与盈利情况用算式列出来吗?
5、通过算式你能说出这个公司去年盈亏情况如何吗?
【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行)再由学生自主完成运算。
【教法说明】:此题一方面可以复习加()法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。
(三)归纳小结
今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的`过程用数学的形式表现出来,直观准确的解决问题。
六、板书设计
板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。
学习目标:
理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算
学习重点:
正确运用有理数除法法则进行有理数除法运算
学习难点:
寻找有理数除法转化为有理数乘法的方法和条件
教学方法:
引导、探究、归纳与练习相结合
教学过程
活动一探讨有理数除法法则:
独立完成——合作交流——展示成果
阅读课本P35例5以上的内容,谈谈有理数除法法则是如何得出的?换其他数的除法进行类似讨论,是否任有除
目标导行:
1.理解除法的意义、除法是乘法的逆运算(重点)
2.理解和掌握有理数除法的两个法则,会正确地进行有理数的除法运算(重点、难点)
思维诊断:
(打“√”或“×”)
(1)0除以任何一个数,都得0()
(2)1除以一个非零数就等于乘这个数的倒数()
(3)两数相除,商一定小于被除数()
(4)两数相除商为正数,则这两个数均为正数()
(5)一个不等于0的有理数除以它的相反数等于-1()
【总结提升】有理数相除的方法
1.0除以任何一个不等于0的`数,都得0;但0不能作除数
2.在进行除法运算时,若能整除,则用“两数相除,同号得正,异号得负,并把绝对值相除”;若不能整除,则用“除以一个不等于0的数,等于乘这个数的倒数”
3.除法算式中的小数常化成分数,带分数化成假分数,便于转化为乘法时约分
【总结提升】分数化简的方法
1.把分数转化为除法,利用有理数的除法法则进行化简
2.利用分数的基本性质,分子和分母都乘以同一个数或都除以同一个不为0的数结果不变进行化简
6.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.
(1)用正负数表示每日实际生产量与计划量的增减情况
(2)该自行车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?
【归纳整合】符号移动法
化简分数仍遵循“同号得正,异号得负”的符号法则,因此可得符号移动法则:分子、分母、分数前面的符号,三者有一个或三个为负,结果为负,有两个为负,结果为正。
教学目标:
知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.
过程与方法:通过有理数除法的法则的导出及运用,学生能体会转化的思想。
感知数学知识具有普遍联系性、相互转化性。
情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。
体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。
教学重点:
有理数的除法法则及其运用
教学难点:
(1)商的符号的确定。
(2)0不能作除数的`理解。
教材分析:乘法与除法互为逆运算,小学已经学过。通过实例引入,说明它在有理数的范围内也成立。本节内容在学生已有有理数乘法知识的基础上,通过学生经历从具体情景中抽象出法则的过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。
教具:
多媒体课件
教学方法:
引导发现法类比归纳法
课时安排:
一课时
教学过程
创设情境
问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录如下:+5、-20。-19。-14。求:这四名同学的平均成绩是超过80分或不足80分?学生在教师的激情互动中,思考列式(+5-20-19-14)÷4
化简:(-48)÷4=?(但不知如何计算)
揭示课题
从实际生活引入,体现数学知识源于生活及数学的现实意义。
复习回顾前置补偿
求下列各数的倒数:
(1)-;(2)4;(3)0.2(4)-0.25;(5)-1
学生对老师的提问进行抢答为学习今天的有理数除法先复习小学倒数概念
探究活动一课件出示练习题
填空:
①8÷(-2)=8×();
②6÷(-3)=6×();
③-6÷()=-6×;
④-6÷()=-6×。
教师强调0没有倒数。学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)
培养学生发现问题总结问题的能力
探究活动二引例1计算:(-6)÷2
根据除法是乘法的逆运算,引导学生将有理数的除法运算转化为学生已知的乘法运算。
强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算
学生归纳导出法则(一):除以一个数等于乘以这个数的倒数
小组合作交流探究发现结果
探究活动三
(举例强化已导出的法则)
例1计算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种方法。
学生自己观察回忆,进行自主学习和合作交流,得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)
激发学生学习的积极性和主动性满足学生的表现欲和探究欲)
强化练习课本例2计算:
(1)(-)÷(-6)÷(-)
(2)(-)÷(-)
学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。
反馈矫正
课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性
归纳小节1、学习内容:倒数的概念及求法;有理数的除法
2、通过本节的学习,你有哪些体会?请与同学交流。
同学之间进行交流,小结本节内容培养了学生总结问题的能力
作业布置必做题:课本70页第1,3,4题
选做题:若ab≠0,则可能的取值是_______.综合考查,学以致用。不同的学生得到不同的发展
附:板书设计
2.9有理数的除法
例1计算:练习处:
例2计算:
教学反思:
《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力。
在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。
一、课题
有理数的除法
二、教学目标
1.使学生理解有理数倒数的意义;
2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;
3.培养学生观察、归纳、概括及运算能力。
三、教学重点和难点
重点:有理数除法法则。
难点:
(1)商的符号的确定。
(2)0不能作除数的理解。
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.叙述有理数乘法法则。
2.叙述有理数乘法的运算律。
3.计算:
(1)3×(-2);(2)-3×5;(3)(-2)×(-5)。
(二)、导入新课
因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;
同样-3×5=-15,解简易方程-3x=-15,得x=5。
在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15,已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.
三、讲授新课
1.有埋数的倒数
0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的)
提问:怎样求一个数的倒数?
答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分
数再求倒数。
什么性质
所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用。
这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义。
2.有理数除法法则
利用有理数倒数的概念,我们进一步学习有理数除法。
因为(-2)×(-4)=8,所以8÷(-4)=-2。
由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即
除以一个数等于乘以这个数的倒数。
0不能作除数。
例1计算:
课堂练习
(1)写出下列各数的.倒数:
(2)计算:
3.有理数除法的符号法则
观察上面的练习,引导学生总结出有理数除法的商的符号法则:
两数相除,同号得正,异号得负
掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:
两数相除,同号得正,异号得负,并把绝对值相除
0除以任何一个不为0的数,都得0
≠0).利用除法法则可以化简分数
例2化简下列分数:
例3计算:
(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9
(四)、小结
1.指导学生看书,重点是除法法则
2.引导学生归纳有理数除法的一般步骤:
(1)确定商的符号;
(2)把除数化为它的倒数;
(3)利用乘法计算结果
一、说教材
1、教材的地位及作用。
有理数的运算是本章的重点,是学好后续内容的重要前提。本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系。整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。通过本节学习让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识。
2、教学目标。
根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:
(1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。
(2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。
(3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。
3、教学重点、难点
在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。勤思、善思,是学好数学的`必要条件。本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难度,因此,本节课的教学难点定为:理解有理数的除法法则。
二、说教法
为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:
针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。运用“自学—辅导”模式,遵循“面向全体,尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生动、直观到抽象思维的认识规律。
三、说学法
在教学活动中,为了激发学生自主学习,真正做到课堂教学面向全体学生,在教师的组织引导下,采用自主探究、合作交流的研讨式学习方式,让学生思考问题、获取知识、掌握方法,从而培养学生动手、动口、动脑的能力,成为学习的真正主人。
四、教学过程设计
1、设计问题,导入课题,提出课堂教学目标。
本着设计问题要有启发性、探索性的原则,首先出示了学生熟知的问题8÷(-4)=?也就是说(-4)x?=8
得出(-4)x(-2)=8所以8÷(-4)=-2而我们知道8x(-1/4)=-2所以8÷(-4)=8x(-1/4)
2、指导学生自学。
课件揭示自学指导(1)阅读教材第34页内容;(2)小组讨论疑难问题。这样做的目的是:让学生带着明确的任务,掌握恰当的自学方法,从而使自学更有效,与此同时,坚持每次自学前给予方法指导,可以使学生积累自学方法,从而提高学生的自学能力。
3、学生自学,教师巡视。
学生根据自学指导开始自学,通过察言观色,了解学生自学情况,使每个学生都积极动脑,认真学习,从而挖掘每个学生的潜力。在这个过程中,我会重点巡视中差的学生,帮助他们端正学习态度。
4、检查自学效果。
课件展示与例题类似的习题,让后进生板演或回答,要面向全体学生,后进生回答或板演时,要照顾到全体同学,让他们聆听别人回答问题,随时准备纠正错误,通过巡视,搜集学生存在的错误,并在头脑里分类,哪些属于新知方面的,哪些属于旧知遗忘或粗心大意的,把倾向性的错误用彩色粉笔写在黑板对应练习处,供讲评时用。通过这个过程,培养学生分析问题和解决问题以及学已致用的能力。
5、引导学生更正,指导学生运用。
学生观察板演,找出错误或比较与自己做的方法,结果是否与板演的相同,学生自由更正,让他们各抒己见,小组讨论,说出错因,更正的道理,引导学生归纳,上升为理论,指导以后的学习。这个过程既是帮助后进生解决疑难问题,又通过纠正错误,训练一题多解,使优等生了解更加透彻,训练他们的求异思维和创新思维,培养了他们的创新精神和一题多解的能力。同时,在这个过程中,要引导学生寻找规律,帮助学生归纳上升为理论,引导学生找出运用时可能出现的错误,这是从理论到理论架起一座桥梁,以免学生走弯路。
6、当堂训练。
为学生巩固知识,加深理解,我给出一组练习,这组题目,分三个梯度:法则的直接运用、有理数的除法运算、解决实际问题,而且把这些题分为必做题、选做题。通过完成课堂作业,检测每一位学生是否都能当堂达到学习目的。在这个过程中,我会不断巡视,了解哪些同学真正做到了“堂堂清”,哪些同学课后需要“开小灶”,使课外辅导要有针对性。
7、反思小结,观点提炼。
通过前六个环节,学生已对本节课所学的内容有了较深刻的理解和掌握,引导学生进行反思,整理知识,总结规律,提炼思想方法。让学生从多角度对本节课归纳总结、感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。
8、布置作业。
课本38页四题让学生做到作业本上,以考查学生对本节基本方法和基本技能的掌握情况。
五、两点说明。
(一)、板书设计
这节课的板书我是这样设计的,在黑板的正上方中间处写明课题,然后把板书分为左右两部分,左边是有理数除法的法则,为了培养学生把文字语言转化成符号语言的能力,板书中只出现两种法则的符号表示,从而加深他们对法则的理解,板书右边是学生的板演,以便于比较他们做题中出现的问题。板书下方是课堂小结,重点写出:有理数的除法可以转化成有理数的乘法,以体现本节课中的重要的数学思想方法。
有理数的除法
有理数除法的法则:a÷b=a×1/b(b≠0)板演练习:
1
a>0,b>0,a/b>0;a<0,b<0,ab="">0;2
a>0,b<0,a/b<0;a<0,b>0,a/b<0.3
课堂小结:有理数的除法有理数的乘法
转化
(二)、时间分配:
教学过程中的八个环节所需的时间分别为:1分钟、2分钟、5分钟、8分钟、8分钟、16分钟、2分钟、1分钟。
热门推荐