量子力学的基本理论观点范例(12篇)
时间:2024-04-15
时间:2024-04-15
关键词量子力学教学内容教学方法
中图分类号:G420文献标识码:A
TeachingMethodsandPracticeofQuantumMechanicsof
MaterialsPhysicsProfessional
FUPing
(CollegeofMaterialsScienceandEngineering,WuhanInstituteofTechnology,Wuhan,Hubei430073)
AbstractForthedifficultiesfacedbystudentsinMaterialsprofessionaltolearnquantummechanicsphysicscourse,byasummaryofteachingpracticeinrecentyears,fromtheteachingcontent,teachingmethodsandmeansofexplorationandpractice,studentsmobilizetheenthusiasmandinitiative,andachievedgoodteachingresults.
Keywordsquantummechanics;teachingcontent;teachingmethods
0引言
量子力学是研究微观粒子(如原子、分子、原子核和基本粒子等)运动规律的物理学分支学科,它和相对论是矗立在20世纪之初的两座科学丰碑,一起构成了现代物理学的两块理论基石。相对论和量子力学彻底改变了经典物理学的世界观,并且深化了人类对自然界的认识,改造了人类的宇宙观和思想方法,它使人们对物质存在的方式及其运动形态等的认识产生了一个质的飞跃。
量子力学是材料物理专业一门承前启后的专业基础必修课:量子力学的教学必须以数学为基础,包括线性代数、概率论、高等数学、数理方法等,其又是后续课程材料科学基础、固体物理、材料物理、纳米材料等的理论基础。可见,量子力学课程在材料物理专业的课程体系中占有非常重要的地位,学生掌握的程度直接影响后续专业课程的学习。作者近年来一直从事量子力学的教学工作,针对量子力学课程教学过程中存在的现象和问题,进行了较深入细致的思考与探讨,在实际教学过程中对本课程的教学方法进行了探索与实践,收到了较好的教学效果。
1量子力学教学面临的难点
量子力学研究的是微观粒子的运动规律,微观粒子同宏观粒子不同,看不见,摸不着,只有借助于探测器才能察觉它的存在和属性。材料物理专业学生之前学习的基本上是经典物理,而量子力学理论无法用经典理论进行解释,学生对此感到难于理解。因此,经典物理的传统观念对学生思想的束缚,构成了学生学习量子力学的思想障碍;量子力学可以说无处不“数学”,由于材料物理专业学生在数学基础方面与物理专业学生相比较为薄弱,在学习过程中普遍感到数学计算繁难,对大段的数学推导表现出畏难情绪。可见,量子力学对数学的精彩诠释却构成了学生学习量子力学的心理障碍。这两大障碍势必会影响量子力学和后续课程的学习。在这种情况下,我们应当怎样开展量子力学教学从而使学生重视并努力学好该课程就成了一个严峻的挑战。
2明确教学重点和难点、有的放矢
要讲授一门课程,首先应该对课程内容有一个清晰的认识。量子力学的内容可以包括三个方面:一是介绍产生新概念的历史背景及一些重要实验;二是提出一系列不同于经典物理学的基本概念与原理,如波函数、算符等概念和相关原理,是该课程的核心;三是给出解决具体实际问题的方法。三部分内容相互联系,层层推进,形成完整的知识体系。作为引导者,教师应在这三部分内容的教学过程中帮助学生成功地突破两大束缚。第一部分内容教师应考虑如何引导学生入门,从习惯古典概念转而接受量子概念。在讲授这部分内容时要将重点放在“经典”向“量子”的过渡上,引出量子力学与经典力学在研究方法上的显著不同:经典力学是将其研究对象作为连续的不间断的整体对待,而量子力学将其研究对象看成的间断的、不连续的。学生在学习这部分时应仔细“品尝”其中的“滋味”,以便启发自己的思维自然地产生一个飞跃,完成思想的突破。第二、三部分是量子力学学习的重点与难点,并且涉及大量的数学推导,教师应采取适当的教学手段,突出重点,强调难点。在物理学研究中,数学只是用来表达物理思想并在此基础上进行逻辑演算的工具,不能将物理内容淹没在复杂的数学形式当中。通过数学推导才能得到的结论,只需告诉学生,从数学上可以得到这样的结果就可以了,无需将重点放在繁难的数学推导上,否则会使学生本末倒置,忽略了对量子力学思想的理解。这样的教学可以帮助学生突破心理障碍,不会一提量子力学就想到复杂的数学推导,从而产生抵触情绪。成功地突破这两大障碍,是学习量子力学的关键。
3教学方法的改革
3.1利用现代技术改进教学手段
传统的板书教学能够形成系统性的知识框架,教师在板书推导的过程中,学生有时间反应和思考,紧跟教师的思路,从而可以详细、循序渐进地吸收所学知识,并培养了良好的思维习惯。但全程板书会导致上课节奏慢,授课内容有限。目前随着高校教学改革的推进,授课学时相继减少,对于传统教学方式来讲,要完成教学任务比较困难。这就要借助现代科技手段进行教学改革,包括多媒体课件的使用和网络教学。但是在量子力学教学中,一些繁杂公式的推导,如果使用多媒体课件,节奏会较快,导致学生目不暇接,来不及做笔记,更来不及思考,不利于讲授内容的消化吸收。鉴于此,对于量子力学课程,教学过程应采用板书和多媒体技术相结合的方式,充分发挥二者的优势,调动学生的学习积极性。
3.2建设习题库
量子力学课程理论抽象,要深入理解这些理论,在熟练掌握教材基本知识的基础上,需要通过大量习题的演练,循序渐近,才能检验自己理解的程度,真正学好这门课程。因此在教学过程中,强调做习题的重要性。有针对性地根据材料物理专业量子力学的教学大纲和教学内容,参考多本量子力学教材和习题集,利用计算机技术建设量子力学习题库,题型包括选择、填空、证明、简答和计算题等,内容涵盖各知识点,从简到繁、由浅至深。题库操作方便,学生可自行操作,并对所做结果进行实时检查,从而清楚自己掌握本课程的程度。这一方式在近几年的教学中取得了良好的教学效果。
3.3加强与学生互动,调动学生的学习积极性
教学是一个师生互动的过程,应让学生始终处于主动学习的位置而不是被动的接受。量子力学课程的学习更应积极调动学生的积极性,因此教师应在教学过程中加强与学生的互动。增设课前提问、课后讨论环节,认真批改作业,积极发现学生学习过程中存在的问题,并及时对问题进行深入讲解,解决问题。另外,由于量子力学是建立在一系列基本假定基础之上的,抽象难懂,鉴于学生难接受的情况,在授课时注意理论联系实际,尽可能进行知识的渗透和迁移,将量子力学在实际中的应用穿插于教学之中,丰富教学内容,开拓学生视野,从而调动学生的学习兴趣和积极性。
4结语
通过近年来教学经验的总结和探索,形成了一套适合材料物理专业量子力学课程教学的方法,该方法教学效果良好。在近几年的研究生入学考试中,学生量子力学课程的成绩优秀,说明采用这样的教学方法是成功的。
资助项目:武汉工程大学2010年校级教学研究项目(X201037)
在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。
要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。
作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。
这一自在的实在具有由它的“自明性”所保证的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保证的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。
上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的最高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。
在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能完全放在客观实在的背景上。因此,在科学认识的层次上,思维形态完全可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有完全相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保证,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。
科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。
二、数学语言
数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。
爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。
爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。
首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。
其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。
由此可见,数学与自然科学的不同仅表现在对于它们的结果的可靠性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。
事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。
三、物理学语言
虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。
在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保证一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。
然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。
当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。
可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。
上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。
四、量子力学的语言问题
上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了绝对时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。
量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。
量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不精确的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕
量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。
薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将n个粒子组成的体系的波函数解释为3n维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。
固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。
玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。
这里所说的“基础”指的是,一种全新的语言涉及主客体间完全不同的相互介定。它涉及对客体的完全不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。
可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。
五、量子力学何种程度上是“革命性”的
量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。
正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。
另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。
这些努力在很大程度上是具有保守性的。
我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而推翻了绝对时空、绝对同时性等旧观念,并代之以新的时空观。重要的是,在这里,绝对时空和绝对同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加准确明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。
量子力学的情况则不同。它的保守性主要表现在:
第一,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。
第二,不完全连续性、非完全决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保证的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。
第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。
第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。
本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。
海森堡等人与新康德主义哲学家g·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保证,逻辑是它的抽象和提升。
在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?
如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情完全是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕
参考文献和注释
关键词心身二元论经典力学观察者意识
中图分类号:B089文献标识码:A
意识涵盖了大部分的心理现象,它既是我们体验到的对心理状态的复杂的内省,又等同于“觉醒”的状态,或者感知状态。因此,在给意识下定义时就会出现困难,它所涉及的分支众多,难以用一个单一的定义将意识所包含的方面全部囊括其中。意识的核心问题是“现象性”,理解意识的关键在于弄清楚现象性本身的本质及其起源。在早期西方哲学历史上,意识问题是以“心身问题”为标志开始的,意识是“心灵”的一个特征。从最早时期开始,意识与死亡相关联,人们希望并且相信,意识是与物质性的身体相区别的东西。因此,对意识的研究首先要回溯到早期历史上的心身问题。
自从笛卡尔提出“心身二元论”,赋予“心灵”以实体地位以来,对于心灵是否存在、怎样存在、如果存在,心灵该如何与身体相互作用等问题的争论延续至今。笛卡尔认为,心灵与物质是独立的两个实体,物质具有广延的属性,却不能思考,心灵能够思考却不占有空间。从对日常经验的内在主义素朴描述出发来看,心灵与身体之间和谐地相互作用,促使人们能够相信,心灵必然有其独特的存在地位。为了说明两者如何互动作用,笛卡尔提出“松果腺”这一概念。但是“松果腺”的提出,却恰恰暴露出笛卡尔的心灵观念存在的矛盾。
从内在主义的角度看,心灵确实与物质相互作用,意愿、欲望能够促成行为的发生,导致行为对象的改变等。但是,由于心灵不具有广延且不占有空间的属性,又导致人们无法运用在经典力学基础之上形成的认知图式,来理解和说明心灵的存在形式,心灵怎样与物质相互作用更成为了一个难题。如果承认心灵的独特实体地位,则有悖于经典力学的科学原则,如果依照唯物主义的基本观点,把心灵与物质等同起来,用大脑内部的物质之间的相互作用来说明意识活动,则导致无法说明为什么存在主观体验和感受的问题,这显然又违背了人类体验的直觉。因此,无论是坚持二元论还是唯物主义一元论,心物互动问题都面临着极大的理论困难,坚持内在主义观点,就必须说明心灵有别于物质的本体论地位以及心身互动的作用机制;坚持唯物主义的观点,就必须说明为什么人会有主观体验和感受。本文认为,除了上述两种对心物关系的说明之外,存在第三种对心物关系的思考,即对经典力学原则在说明心灵问题上是否具有适用性的质疑:经典力学的原则是万能的吗?它是否能够作为评判心灵是否存在以及怎样存在的标准?心物关系问题难以有所进展,是否因为我们用来评判心灵存在的标准出了问题?量子力学能否作为新的研究范式来推进心灵的研究?
随着人们认知程度的提高,自然科学的发展,对心灵问题的讨论更加如火如荼。古老神秘的“心灵”概念也逐渐以“意识”这一崭新的形式出现在哲学、神经科学、心理学、计算机科学等多学科的交叉研究视域中。本文将以“意识”这一概念来论述笛卡尔心物二元论中所提及的“心灵”。
“有一种古老的观点:自然由两部分组成,一部分包含感觉和思想,另一部分在运动中包含有物质对象。这个观点在笛卡尔的时代复活,并成为经典物理学的基础。”①1687年,牛顿出版了著名的《自然哲学的数学原理》一书,掀起了科学的革命。在这本书中,宇宙被描述成一个遵循严格规律的大机器,依照数学的精密性在空间中运动。一切事物都可以被还原成遵循严格规律运动的物质实体,作为因果决定链条上的一环,按照既定的规律运行。因此,经典物理学的世界被冠以具有决定论和客观性的特征。但是在涉及到微观世界的对象时,经典物理学的基本原则就失效了。
意识问题是当代哲学、神经科学、心理学、计算机科学等多个交叉学科进行跨学科研究的热点难题。众多学科关注意识的原因在于,它是关乎人的本性根基和人与外部世界关系的根本性问题。不论是唯物主义立场,还是二元论立场来看待意识,都有不可回避的理论困难。
以上两种立场在说明意识问题的过程中,会遭遇到困难的原因,除了意识问题本身的复杂性之外,另一个重要的原因是,唯物主义和二元论均把研究宏观事物低速运动规律的经典力学,作为思考意识问题的理论基础。二元论产生的部分原因是迫于经典力学的还原论和客观性压力,人们无法调和与说明物质活动和意识之间存在形式的不协调,但是却又难以违背自己体验的常识,放弃意识的主观性特征。唯物主义则恰恰相反,它遵循经典力学的客观性、决定论、还原论等根本规律,把物质放在优先地位,试图用经典力学的规律来同化或拒斥意识的主观性特征。在一定程度上,二元论与唯物主义这两种相对立的立场都是以经典力学的原则为根本依据,朝着各自相反的方向建构自己的理论,但是,二元论从理论内部割裂了意识与物质的关联,而唯物主义又混淆了意识与物质的差别。
以牛顿运动定律为主要内容的经典力学在20世纪以前被称为最美的物理学,它通过把“意识”排斥在研究范围之外来实现其理论的完备性。它假定时空的绝对性和依据初始值可进行精确预测等特征,为人类认识自然、了解自身的本性描绘了一幅因果封闭、清晰可测的蓝图。世界上的任何物理系统都能够被分解为各个组成元素,各个组成元素只能够与彼此相邻的元素发生相互作用,物理系统遵循着严格的物理因果封闭定律,根据一定的可观测的物理量,能够做出无限精确的预测。经典力学的唯物主义世界观已经否定了意识是有别于物质,具有独立存在地位的实体。大脑是世界上最为精密且复杂的整体系统,它作为意识活动发生的场所已经是毋庸置疑的科学事实。按照经典力学的观点,大脑与意识同样应该遵守经典力学的根本原则,但显然意识的诸多属性以及对应的神经活动的规律都无法用经典力学来说明。
神经科学的研究成果已经表明,意识活动的发生受到大脑整体活动的控制,它并不是固定发生在大脑的某一个区域。同样,大脑的某一部分神经通路也不是意识发生的场所,完整的意识的出现,需要调动大脑内部不同脑区的神经元进行放电。不同的意识场景所对应的神经元活动的组合也不一样。就目前的神经研究成果而言,神经科学只能够对意识活动的说明进行基于科学经验上的描述,而不能够进行充分的因果说明。经典力学中的整体可以分解成部分的组合的原则,无法说明意识的高度统一性;相邻部分的因果互动原则更加无法解释不同脑区的神经活动,怎样能够作为单一的意识活动的组成部分。发生在个体大脑中的意识转瞬即逝,难以捕捉,甚至毫无规律可循。大脑内部呈现的意识场景为什么具有统一整合性和动态的分化性,归属于不同脑区的神经元为什么能同时放电而形成单一的意识场景,控制这些神经元活动的机制是什么?这些问题,对于研究宏观事物运动规律的经典力学而言存在困难。经典力学中不需要涉及对微观事物的化学过程的说明,而这一点对于大脑研究来说,则非常重要。
如果从大脑内部和大脑外部两个维度,来对意识进行一种描述上的区分,从大脑外部,引入一个“观察者”,那么对意识就可以做出两种不同的描述。这两种维度的描述之间的区别也表明,经典力学难以说明意识。
按照经典力学的原则,每个脑区的神经元只能够与它紧邻的神经元发生互动,并根据所处的大脑区域的定域性而非全局性来表征意识场景。对意识的内在描述不是从外在的“观察者”或者元素集合所体现出的整体功能性角度进行描述,而是对这些独立的神经元描述的组合的描述。“根据经典力学,对物理系统和它的动力学的状态的描述,能够在内在的层次上表达出来。但是人们怎样来理解经验的整体思想的发生呢?”②
外在描述是在引入一个外部“观察者”之后而做出的描述,观察者知道大脑内部描述是由诸多元素所构成,但是,他能够从外在维度对内部元素进行整合,使内部元素组合起来具有整体的表征属性。同时,外部的观察者能够从整体的功能性角度出发来进行整体表征,在观察者的意识中形成的整体性描述,不会受到各个不同脑区神经元活动的区域性限制。总之,这个外在的观察者不仅具备“知道”大脑内部是由多个元素组合的能力,还具备把这些元素集合成整体的能力。因此,在内在描述层次上的独立元素的集合,在外在层次上可以被称为是一个单一的整体。
从功能的角度出发,大脑被看作是一个功能性的整体,但是在经典力学的框架中,功能基本上不具备任何实际的意义,因为大脑的过程受到不同脑区神经活动的控制,然而,大脑部分与部分之间的相互作用不可能实现大脑的整体作用。从根本上来说,一个从外在层次所描述的功能性整体,所表现出来的整体性含义要比逻辑上独立的要素的简单集合要复杂得多,而这一点恰恰是与经典力学的根本原则相悖。因此,意识的整体功能性概念在经典力学框架中也无法得到合理的说明。
依据经典力学的法则,整体可以被分解为独立的局部要素的集合。“功能性”对于物理因果封闭定律而言是无效的,因而不具备任何存在的理由,唯一承认它的理由就是方便我们从外在层次对它进行直接的理解。
灵感与顿悟是经常出现在人类思考过程中的真实存在的心理现象,在艺术和科学研究中表现尤为明显。它们具有突发性、偶然性、丰富性、瞬息变化等特征,它们常常会受到当下场景或意识内容的刺激而产生,但是其产生的机制与结果却远远超出了人对当下对意识的研究水平。按照经典力学的可预测性原则,依据一定的可观测的物理量,就能够对事物做出精确的预测,但是在灵感和顿悟这类具有突发性的心理现象上,经典力学的根本原则显然不适用。
根据经典力学的根本原则来解决意识问题面临诸多的理论困难,意识的高度整合性和高度的分化性、主观体验的整体性和动态多样性、从外在的功能角度所描述的大脑的整体功能性特征、灵感和顿悟这类突发性的心理现象都无法从经典力学理论中得到科学合理的说明。
斯塔普(HenryStapp)认为,对于经典力学而言,意识和行为之间的紧密关系不可能从逻辑上推导出来,相反,这恰恰意味着经典力学的不完整性。经典力学不能够蕴含意识的现象性方面,除非意识是一种副现象。但是,如果意识是副现象,则显然有悖了直觉。如果经典力学控制自然的整个动态过程,那么作为人类大脑高度进化发展结果的意识就是一个令人怀疑的神话。经典力学的动态原则既不蕴含现象实在的存在,也不能够对它们怎样从简单形式进化到高级阶段提供一种自然的动态说明。在经典力学的理论框架当中,人类的体验既没有存在地位,它也无法对大脑的动态作用提供充分合理的自然说明,那么我们就应该放弃用经典力学的整体逻辑结构来研究意识,并转而寻求一种能让我们的体验充分发挥动态作用,且完全不同的逻辑结构的模式,这一模式就是量子力学。
量子力学的诞生打破了人类对经典力学关于世界的固有认识,传统的物质观念、物理封闭因果定律、决定论和连续性观点都遭到了破坏。量子力学重新为人类描述了一个新奇的、感官不可知、反常识的世界。量子力学的理论框架内,大脑被看作一个量子系统。
意识与大脑之间的紧密联系已经是一个不争的科学事实,虽然经典力学在说明意识问题上存在许多的理论困难,但是科学的发展趋势表明,我们始终要在科学的框架内来说明意识。因此,意识研究必须转换一种新的研究范式。目前,最有希望将意识重新纳入到物质世界的科学理论只有量子力学。“冯诺依曼、诺伯特维纳和霍尔丹指出,自然的量子力学方面似乎是为了将意识重新纳入我们现有的物质概念而为意识量身定做。”③
经典力学与量子力学的不同之处在于,量子力学引入了“观察者”因素,测量结果不再是具有绝对的客观性。尤其是在对意识进行研究的过程中,“观察者”本身也作为物理系统的一部分而参与和影响着对意识的测量结果。由于意识具有高度的分化性,各种心理事件瞬息万变,每一次对意识的测量都会取得不同的结果,为了对意识现象做出完备的描述,每一次的测量结果彼此之间呈互补关系,这种互补性取消了在经典力学框架内应该具有的严格因果律,意识呈现出非因果性的特征。
当代著名的心灵哲学家查默斯也多次在其著作中谈到意识可能与量子力学有紧密的关系,但是对此他常常又持一种怀疑的态度。作为提出“意识的困难问题”而闻名于世的哲学家来说,他始终关注的是意识的主观经验问题,但是,在他看来,量子力学与经典力学相比,在意识问题上具有一定的优势,但是即便如此,这一范式目前还未能说明为什么会有主观感受的发生。“问题在于物理理论的基本元素都要归结到两点:结构和物理过程的动力学,但是从结构和动力学出发,我们只能获得更多的结构和动力学,而有意识的经验仍然没有被涉及。”④尽管如此,量子力学在意识研究上仍有许多探讨的空间。
注释
①Stapp,H.P.(1993)Mind,Matter,andQuantumMechanics,Springer-Verlag.83.
关键词:自然哲学量子革命系统辩证法
关于20世纪科学革命,有人说只须记住三件事:相对论、量子革命和混沌学(系统科学中最突出的新分支)。正是这三大科学革命为人类建构全新的自然图景(也就是新颖的自然哲学)作出了决定性的贡献。这里所谓自然哲学是指人对自然的哲学反思。自然哲学的中心问题就是基于人与自然的关系来研究自然本体最一般的性质和人类的世界图景。
一
自然哲学在哲学史上有过两个全盛时期(古希腊及近代机械论),只是在谢林、黑格尔之后衰落了。由于20世纪三大科学革命的强大影响,自然哲学正在当代复兴起来,这是十分令人鼓舞的。我们先从三大科学革命说起。
首先要提到的是相对论革命对改造人类世界图景的贡献。在1905年的狭义相对论中,时空性质依赖于参照系等概念是对“观察无关性”的经典信念的初次冲击;1915年的广义相对论把引力场(它具有整体全息相关性)确立为新的“独立的实在”,这是对牛顿的实体观的又一次打击。接着要论述的是量子革命,它比相对论革命更为深刻地改变着人类的世界图景。因为1925年以后所创建的量子力学进一步使笛卡儿与牛顿以来的主客绝对二分原则、实体主义原则乃至严格决定论原则都受到猛烈冲击。最后要强调的是系统科学革命。20世纪中叶以来近半个世纪系统科学的蓬勃发展表明,从总体上说,系统自然观集中体现了当代自然图景的精华,因此系统自然观几乎成了当代自然科学的世界图景的代名词,贝塔朗菲称之为“一种新的自然哲学”。20年代所出现的怀特海的“机体论哲学”则是这种自然哲学之先声。
当代的系统自然观借助于维纳的控制论(1949)、贝塔朗菲的一般系统论(1948)、普利高津的耗散结构论(1969)和哈肯的协同学(1971)等理论复活了亚里士多德的机体论和内在目的论的自然哲学。〔1〕控制论通过对“动物(即生命系统)和机器(即非生命系统)的通用规律”的研究表明,自动机器通过反馈调节机制可以表现出与神经控制同样的合目的性或规律。[1]维纳在《控制论》中对牛顿的严格决定论进行了深刻有力的批判,肯定了统计力学家吉布斯把偶然性引进到科学中来的重大的方法论意义,并突破了目的论与机械论之间的两极对立。莫诺在《偶然性与必然性——略论现代生物学的自然哲学》(1971)一书中,则用生物微观控制论表明,借助于生物化学和分子生物学层次的反馈机制以及微观-宏观相互作用,完全偶然的基因突变最终可以纳入物种进化的必然轨道;耗散结构论表明,在远离平衡态条件下开放系统可以通过非线性正反馈机制的作用表现出有序化和合目的性;协同学还进一步发现序参量是整个自组织过程的主宰如此等等。总之,所有这些自动机器和自组织理论都表明,无须超自然的神力和神秘的“生命力”,自然系统也象自动机一样可以凭借内在机制的作用呈现合目的性。从这个特定意义上说,认为宇宙=巨大的超级自动机的“机械论”是对的,而非神学性的宇宙“内在目的论”也是对的。从历史上看,牛顿的机械论自然哲学是对亚里士多德的目的论自然哲学的否定。现在,我们的立足于系统科学的新自然哲学则应看作一种“否定之否定”。它是对机械论与目的论自然哲学的更高的辩证综合。
当代自然哲学(它以系统自然观及其系统辩证法为核心或灵魂)最有革命性的一个方面,也许表现在反严格决定论和对偶然性客观意义的新认识。直到现在为止,一般人都相信“近似决定论”:只要近似知道一个系统的运行规律和初始条件就可以足够好地计算出系统的近似行为。可是混沌学中著名的“蝴蝶效应”,即系统演化进程对初始条件的敏感依赖性,却断然否决了牛顿-拉普拉斯决定论的任何翻版(如“近似决定论”)的有效性。美国气象学家洛仑兹在1961年发现,实际上长期天气预报是不可能的。因为即使对于严格确定的气象方程组,初始条件的小误差,也会导致灾难性的后果。诸如珞珈山的蝴蝶拍拍翅膀那样的初始小扰动,经由地球大气系统中的逐级放大,最终可能在南美洲引起大风暴。这种由决定论引出来的混沌,对经典观念的打击是毁灭性的。混沌革命加强并深化了量子革命。
通过量子力学、分子生物学、协同学乃至混沌学的研究,现代科学家越来越认识到,偶然性在自然界具有不容忽视的本体论地位,以及研究偶然性的内在机制的重要性。为恩格斯赞同过的黑格尔关于“必然性自己规定自己为偶然性,……偶然性又宁可说是绝对的必然性”(〔2〕,第562—563页)的辩证论断,得到最新自然科学的支持。正如马克斯·玻恩在《关于因果与机遇的自然哲学》(1951)中所注意到的,量子世界是由因果与机遇联合统治的,其中机遇是有规则的。同样,在哈肯的协同学演化方程(如福克-普朗克方程和郎之万方程)中,决定论力项与随机力项是共同起作用的。在混沌理论中,混沌本是由决定论规律引出的内在的无序和不规则性,然而对混沌吸引子的相空间图解研究却表明,即使混沌也有精细结构,其中机遇也是有规则的,偶然性与必然性相互作用的深层非线性机制是可以认识的。从量子力学到系统科学的研究表明,概率统计定律是比严格决定论定律更好的认识工具,但原有的“大数定律”与“统计平均值”等概念对于描述偶然性已经显得太粗糙了,非线性数学该出阵参战了。因为唯有借助于非线性数学才可能认清偶然性起作用的深层结构机制。
当代自然哲学中的系统整体论思想也是相当有革命性的。自从欧几里得、阿基米德以来,“整体=部分和”的公理已经成为背景知识不可缺少的一部分。这一观念也是牛顿的机械论自然哲学的一个基本要素(它与实体主义、还原主义相协调)。然而,一般系统论中的贝塔朗菲原理“整体不等于各部分简单相加的总和”,却断然取消了欧几里得的公理,以整体论取代了机械论的还原主义。量子力学中的全域相关性和粒子物理学中的新奇现象(“基本”粒子分割到一定限度,将出现“部分大于整体”的佯谬)以及生态系统的整体关联性(卡普拉《转折点》,1989)都支持贝塔朗菲的系统整体观。
总之,以现代物理学与系统科学为代表的当代科学革命已经引起了人类自然图景的根本变革,人们有理由期待一种浸透着量子力学辩证法和系统科学辩证法精神的全新的自然哲学的出现。
二
现在我们转入当代自然哲学的主要疑难及其可能解法的讨论。
鉴于机械论自然哲学所遇到的困难,当代自然哲学所要讨论的主要问题可以归结如下:1.自然本体的性质问题。物理实在究竟是孤立的实体还是依赖于系统场境的存在?“潜在”是否也是物理实在的基本形态之一?究竟是否存在终极实在?2.物理实在所遵循的规律究竟是决定论还是非决定论的?自然系统究竟是必然性还是偶然性所支配的?偶然性应当具有怎么样的本体论地位(是否应当有)?3.所谓“观察者侵入物理事件”的实质是什么?主客二分的合理界限是什么?4.系统整体论与还原主义孰是孰非?5.目的论的新解释问题。自然系统本身能有目的性吗?能代替上帝作为选择主体的地位吗?目的论是否真与机械论势不两立?它又如何与神学划清界线?下面我们将依次详细分析这些问题:
1.自然本体或物理实在的性质问题。
牛顿机械论自然哲学的本体论或实在观的要害就在于实体主义。一切物理实在被认为都有实体性、实存性,自然被等同于实体的集合(简单相加的总和),一种在绝对空间构架中的机械性的存在物。然而,在新的原子科学中,从前认为不容置疑的“实体实存”原则已经失效。明确的电子“轨道”或光子“路径”等经典性观念在量子力学中是不允许的。电子实际上以“电子云”方式存在着,它并没有绝对分明的轮廓,而且只是或然地显现出来。如“测不准关系”所要求的,电子的位置与相应的动量具有天生的不确定性,决不可能同时有确定的值,因而人们决不可能同时测量到其确定的值。所有这些事实,如果从牛顿的经典本体论的眼光来看简直是不可理解的,因为“潜在性”观念完全没有地位。
实际上,现代物理学家海森伯在批判牛顿机械论实在观的基础上,确实发展了一种全新的、更广义的“潜在”实在观。他根据量子力学事实总结出,潜在是介于可能与现实之间的物理实在的新型式,它被认为特别适用于微观客体。海森伯尖锐地指出:“在量子论中显示的实在概念的变化,并不是过去的简单的继续,而却象是现代科学结构的真正破裂。”(〔3〕,第2页)“几率波的概念是牛顿以来理论物理学中全新的东西。……它是亚里士多德哲学中‘潜在’(potentia)这个老概念的定量表述。它引入了某种介乎实际的事件和事件的观念之间的东西,这是正好介乎可能性和实在性之间的一种新奇的物理实在。”(〔3〕,第11页)“事件并不一定是确定的,而是可能发生或倾向于发生的事情便构成了宇宙中的实在”。(〔4〕,第177页)
总之,海森伯认为量子理论意味着实在观念的革命,牛顿机械论的实在观念已经失效。他举例说,几率波、量子态、电子轨道等都与统计期望值相关联,表示倾向性的、潜在的物理实在,这是物理实在的新形式。
现代粒子物理学的新假说把潜在性观念发展到海森伯本人始料所不及的程度。乔弗利·丘(geoffreychew)著名的粒子靴绊学说[2],断然否定了终极实体的可能性,揭示了自然本体的自助的、生成的本性。按照我的看法,它使系统实在论与系统辩证法完全本体论化了!由于任何粒子都可以充当基础粒子,用以构成其他粒子,因此说穿了没有任何一种粒子是真正的“基本粒子”,这就是所谓“基本粒子并不基本”。从根本上说,自然界不可能还原到任何一种或几种终极的实体。说一个质子可以由中子和π介子所构成,或者说它是由λ超子和k介子所构成,或者说它是由两个核子和一个反核子所构成,甚至说是由场的连续质所构成。所有这一切可能性是同样真实地存在的。应当说,所有这些陈述都同样地正确又同样地不完善。因为真实世界等于所有这些潜在的“可能世界”互相叠加的总和。借用日本物理学家武谷三男的话来说:“作为终极要素的实体——基本粒子本身也是相互流动地相互转化的。这件事变革了以前的物质观,显示了辩证逻辑的正确性。”(〔5〕,第28页)
我们的进一步的问题是:作为自然本体的物理实在究竟是否可以归结为互相孤立的实体?还是从本质上说只能是依赖系统场境的整体全息相关的存在?在对著名的epr假想[3]的实验检验中所表现出来的量子关联(即远距粒子之间的整体相关性)很好地回答了这一问题。正如美国科学哲学家西莫尼(a.shimony)所指出:“我们生活在一个实验结果正在开始阐明哲学问题的非凡时代”。而今最新实验结果表明,两个相隔几米且又没有彼此传递信息机制的实体可能被相互纠结在一起,即它们的行为可以有极显著的相关性,以致对其中一个实体进行测量将瞬时地影响到另一个实体的测量结果。这个新奇的实验结果断然否定了爱因斯坦等人(epr)的预设(即“空间上远隔的客体的实在状态必定是彼此独立的”),却符合量子力学的系统整体观。正如玻尔所注意到的,量子现象是作为整体而存在的,其中所反映出来的内在关联是不可消解的。量子现象的整体性不允许人们对它作机械的切割并把这种切割物认作它自身。因此我们有理由说,量子力学的整体实在观是与系统整体观相通的,量子辩证法与系统辩证法相互渗透,量子革命与系统科学革命相互支持。因此,作为科学革命的结晶,新自然哲学主张,物理实在的部分性质取决于整体,取决于系统的内在关联,从根本上说,自然本体是整体全息相关的存在。
2.决定论与非决定论疑难,偶然性的本体论地位问题。
从前认为不容置疑的机械论自然哲学的“严格决定论”预设,如今在新的原子科学中也已经失效。人们向来认为,自然科学和“自然科学唯物主义”有一个不可动摇的支柱:这就是严格决定论。对自然科学的这种见解,最典型地表现在拉普拉斯杜撰的那个精灵故事中,据说这个精灵(超智慧者)知道世界现况的一切决定因素,因而能够无歧义地得出世界在过去或未来的其他一切状态。这个被后人称作“拉普拉斯妖”的理想实验正是严格决定论的化身。可是,现在在微观领域里发现了与这种严格决定论原则相违背的种种反常事实。简略地说,热学与分子物理学的研究表明,气体分子运动是包含不确定性的自然进程,由于初始条件捉摸不定,单个分子的运动状态成为纯粹的偶然事件。分子运动论乃至统计力学的建立表明,概率统计定律也是自然描述不可缺少的一种基本形式。
强调概率统计定律重要性的科学思想反映到自然哲学中去,就成为“统计决定论”。其要旨可概括如下:对于一些包含不确定性的自然过程,虽然严格决定论不能直接应用,但若应用统计方法研究大量单个偶然事件的平均行为,却可以找出明显的统计规律性。换句话说,这些自然过程在统计平均意义上仍是决定论性的。这是决定论的弱化形式之一。
统计决定论的科学基础在于经典统计力学。统计力学的基本出发点则在于,认为尽管大量分子的集团行为满足统计规律,但从底层基础而言,单个分子(单个过程)仍遵守牛顿定律,满足严格决定论。这样,统计决定论并不把不确定性归因于基础规律的不同,而是把它归因于初始条件的难以捉摸(即人类知识的不完备性)。因此,统计决定论只是严格决定论的补充形式。
然而,将概率统计观点真正贯彻到底,最终导致量子物理学的兴起,而测不准关系的发现则使严格决定论沦为无意义的空想。
在现代科学家中第一个对“非完全决定论”(即under-determinism,这个词的不恰当的替代词是indeterminism,即非决定论)有十分清醒认识的是哥廷根学派的马克斯·玻恩。他在名著《关于因果和机遇的自然哲学》中对非完全决定论作了比其他量子物理学家(如玻尔、海森伯等)更为系统和透彻的分析。通过对玻恩文本的适当解释、调整与转译,我们可以提炼出对当代自然哲学极有价值的内容和决定论/非决定论问题的辩证解。〔7〕
非完全决定论的最主要或最有特色的一种表现形式,是与量子力学相应的概率决定论。其要点如下:(1)单个(量子)过程内在地是几率性的、非决定性质的;(2)“自然界同时受到因果律和机遇律的某种混合方式的支配。”(〔8〕,第9页)(3)机遇律是自然律的终极形式,偶然性有规则,“它们是用数学上的概率论表述出来的。”(〔8〕,第7页)
关于自然界究竟是由必然性还是偶然性所支配的,是决定论性还是非决定论性的那个争论,波普有一个著名的比喻:“云和钟”。“云”就是天上的云,代表极端不确定性,它非常不规则、毫无秩序又有点难以预测;“钟”就是家家都有的时钟,代表高度的确定性,它非常有规则、有秩序又是高度可预测的。这是两个不同的极端,一端变化莫测,另一端高度精确。一般的自然事物往往处在这两个极端之间。波普用“所有的云都是钟”(当然也可以说“所有自然事物都是钟”)表示决定论,用“所有的钟都是云”(当然也可以说“所有自然事物都是云”)表示非决定论。波普终于认识到,人类理性需要的是“处于完全的偶然性和完全的决定论之间的某种中间物,即处于完全的云和完善的钟之间的某种中间物。”(〔6〕,第239—240页)这种完全的偶然论(非决定论)和完全的决定论的中间物,我们可以恰当地称作“非完全决定论”,它意味着对偶然性与必然性、因果与机遇的某种辩证综合,这就是当代自然哲学对这一争论所作的正确解。以上我们是借用m.玻恩与波普的话,经校正、转译纳入自己的概念框架,并用以阐发自己的“非完全决定论”观点。〔7〕
现代生物学和生物微观控制论也为非完全决定论提供新的佐证。莫诺在其名著《偶然性与必然性(略论现代生物学的自然哲学)》中,从分子生物学的材料出发,有力地抨击了严格决定论,并为恢复偶然性在自然哲学中的本体论地位付出极大的努力。莫诺是这样说的:
当偶然事件——因为它总是独一无二的,所以本质上是无法预测的——一旦掺入了dna的结构之中,就会被机械而忠实地进行复制和转录,……从纯粹偶然性的范围中被延伸出来以后,偶然性事件也就进入了必然性的范围,进入了相互排斥、不可调和的确定性的范围了。因为自然选择就是在宏观水平上、在生物体的水平上起作用的。自然选择能够独自从一个噪声源泉中谱写出生物界的全部乐曲。(着重号为引者所加)(〔9〕,第88页)
莫诺这段话应当看作关于生物自然界的非完全决定论,关于极小几率的偶然事件向极严格规律转化过程的生动说明。特别是最后那句话是说明生物界的偶然性与必然性的相互联系、相互作用方式的绝妙比喻。当然,由于莫诺有时十分不恰当地将严格决定论与辩证唯物论混为一谈,应当注意他的言论本身具有两重性。(〔10〕,第324页)
非完全决定论的内容还由于系统科学的兴起而得到了进一步丰富和加强。有人因之称作系统决定论。其要旨可概括如下:
一般的自然界的复杂系统(在自然哲学中姑且撇开社会系统),不能由它的构成要素和子系统通过简单相加和线性因果链无歧义地决定其整体功能和行为。但系统的存在与演化仍有相当确定的规律可循,机遇与因果共同决定着系统的存在和发展,因而系统在整体上仍有决定性。
具体地说,系统演化的主要机理就在于机遇性涨落、反馈和非线性作用。人们常喜欢将借助于系统科学特有的资料所认识的辩证法,称作“系统辩证法”。系统科学从自己的角度阐明了因果与机遇、决定性与随机性的辩证法:自组织系统作为远离平衡态的开放系统,以偶然的随机的涨落为诱导,通过正反馈和非线性放大,某一涨落在矛盾竞争之中取得支配地位,成为序参量,于是使系统的演化纳入必然的轨道,建立时空、功能上的新的有序状态。系统辩证法与矛盾辩证法在自组织动力学机制的解释上是高度一致的:当自组织系统处于不稳定点时,系统内部矛盾全面展开并有所激化,与各种子系统及其要素的局部耦合关系和运动特性相联系的模式和参量都异常活跃,各种参量的涨落此起彼伏,它们都蕴含着一定的结构与组织的胚芽,为了建立自己的独立模式并争夺对全局的支配权,它们之间进行激烈的竞争与对抗,时而“又联合又斗争”,最后才选拔出作为主导模式的序参量。非完全决定论在协同学的描述系统演化的数学方程中也得到反映。如郎之万方程(描述布朗运动的)和福克-普朗克方程中,概率论描述与因果性描述共处于一体,随机作用项与决定论作用项被综合在一起,偶然性与必然性因子被综合在一起。从自然哲学看,它们体现了机遇律与因果律的辩证综合。
3.物理事件与观察的关系、主体-客体相互作用问题。
从前认为不容置疑的“客观事件与任何观测无关”的自然哲学信条,如今在新的原子科学中同样也正在失效。正如海森伯所指出,经典物理学的真正核心,也就是物理事件在时间、空间上的客观进程与任何观测无关的信念,由于许多量子实验的发现而受到冲击。而现代物理学的真正力量就存在于自然界为我们提供的那些新的思想方法之中。因此,再指望用新实验去发现与观测无关的“纯客观事件”或不依赖于观察者和相关参照系的“绝对时间”,就无异于指望极地探险家在南极圈尚未勘查过的地方会发现“世界尽头”,那只能是不切实际的幻想。(〔4〕,第4页和第9页)对原子、电子那样的客体的任何一次射线照射或观测都足以破坏其初始状态,而且由于或然性和不可逆性,这种状态不可恢复。
玻尔为量子力学所作的“互补性诠释”中一个最基本的思想是:观察者(主体)与被观察者(客体)之间的严格划界是不可能的,因为在实际过程中两者处在紧密相连的相互作用之中。无论是纯粹的“主体”即可以)“无干扰”地进行观察的观察者)或是纯粹的“客体”(可以绝对隔绝外界作用而界定被观察系统的孤立状态)概念都只是经典物理学所作的理想化,而这两种理想化既是相互补充又是相互排斥的。〔11〕这就是玻尔著名的“我们既是观众(观察者),又是演员(被观察者)”辩证论断的真实含义。
实际上,从当代自然哲学的眼光看,这是很自然的:人(观察者)本来就是自然(被观察者)不可分割的一部分,我们只能用一种内在化的眼光来看待自然,而不可能象上帝那样用完全超脱的外在化眼光看自然,这就是问题的症结所在。
正如罗森菲尔德所指出,所谓“观察者介入原子事件进程”的局势,容易产生科学事实的客观性被败坏的假象,因此我们必须与机械论和不可救药的唯心主义划清界线。罗森菲尔德本人正是以辩证法为武器在与机械论和唯心主义划界的过程中阐明了观察者与物理事件的辩证关系的客观性质。(〔12〕,第140页)海森伯说得很分明:“量子论并不包含真正的主观特征,它并不引进物理学家的精神作为原子事件的一部分”。(〔3〕,第22页)可见,“客体行为与观测有关”原则并不意味着我们可以抛弃客观实在而接受主观主义。
4.系统整体实在观问题。在阐述以上各个问题的过程中,我们实际上已经阐明了整体实在观的基本观点:“整体不同于各部分机械相加的总和”。自然本体是依赖于系统场境的存在、处在相对相关中的存在,是整体全息相关的实在。正如d.玻姆所指出的,按照量子概念,世界是作为统一的不可分割的整体而存在的,其中即使是每个部分内在的性质(波或粒子)也在一定程度上依赖于场境。其实,人本身就是自然的产物,自然不可分割的一部分,人只能作为参与者并在相互作用过程中用内在化的观点来理解自然本体。只是在系统及其诸要素之间的相互作用可以忽视的情况下,还原主义才是近似地有效的。
5.自然本体目的性的(自组织解释)问题。简单地说,当代自然哲学的目的论观是亚里士多德内在目的论的复活和发展,是现代系统科学目的论观的升华。宇宙象是一个有机统一的整体,自然系统(包括生命系统和非生命自组织系统)的结构、功能和演化过程的合目的性可以通过自然本身的自组织机制的作用得到合理解释。〔1〕
例如,自然选择的实质问题是由生物哲学所提出的一个重要问题。按照生物控制论的初步解答,关于生物进化的自然选择机制实质上就是一种以偶然的突变为素材,通过反馈调节的最优化控制机制。艾根的超循环理论则进一步明确,在大分子的自组织阶段,在生化反应的超循环中选择价值高的突变不断通过过滤和正反馈放大,形成功能性的组织,强化、优化并向更高水平进化。这里,一方面自然选择表现为自然本身的纯物质性的有规则的相互作用过程,但它不同于牛顿的机械因果性模式,因为其中突变与选择机制、机遇与因果是辩证地联合起作用的;另一方面,尽管它排除了自然神力的干预,却仍然是合目的性的过程,因为它有自引导的、自动调节的功能(使物种或分子拟种适应环境)。这样,按系统辩证法重新解释过的合理的目的论又能与神学划清界线。
三
正如我们已经看到的,20世纪早期的相对论量子论革命向统治思想界长达二三百年之久的机械论自然哲学,提出了全面的诘难和挑战,并给予毁灭性的打击。当代自然哲学正是在克服旧自然哲学的危机,在回答新兴自然科学所提出的诘难和挑战的过程中逐步建立起来的。20世纪中叶以来以系统科学群为代表的新兴科学的迅速发展,丰富了当代自然哲学的内涵,加速了人类自然图景革新的步伐。
总起来说,当代自然哲学的核心观点,可以简要地重新概括如下:
1.自然本体是依赖于系统场境的、在关系中生成的、流动的实在,作为孤立实体的终极实在根本不存在,“潜在”是物理实在的一种新形式;2.自然系统遵循非完全决定论(即决定论与非决定论的中间物),它是由因果与机遇联合统治的,此两者互斥又互补。偶然性的本体论地位是:它是自然本体本质中的一个规定、一个方面和一个要素。偶然性存在精细的非线性作用机制(由混沌革命所发现!)。3.物理事件与观测有关,人作为自然系统的一分子只能用参与者的身分和内在化的观点来观察自然,绝对的主客二分只是不切实际的幻想;4.系统整体观在总体上比还原主义更为合理,不过为了进行精细的研究,有节制的还原主义仍是必不可少的和有启发力的,两者其实是互斥又互补的。5.自然系统的合目的性可以按自组织观点得到最合理的解释,目的论与机械论也是互斥又互补的。
最后,我们所要强调的是偶然性的恰当的本体论地位问题。迄今仍有不少读者受过时的哲学教科书的影响,把偶然性当作一种外在的、主观的、局部的、非本质的和不稳定的或暂时的东西。其实这种看法有违辩证法的本意,可以毫不客气地说它属于机械论的范畴。通过对量子辩证法与系统辩证法的研究,我们可以十分有把握地说:机遇或偶然性在本体论中恰恰是一种内在的、固有的、普遍的、本质的和永久性的成分。借用列宁论“假象”的话来说,偶然性是“本质的一个规定、一个方面和一个环节”,是“本质自身在自身中的表现”。机遇与偶然性是客观的并且具有自己的非常独特的规律。在新自然哲学中,我们不能再满足于把偶然性看作必然性的“补充形式”的外在化理解,而要比以往任何时候都更加清醒地认识到,机遇与因果相互联结、相互渗透,辩证地融为一体。在非完全决定论中,偶然性恢复了它本来应有的本体论地位,机遇与因果,偶然性与必然性以几率或统计性乃至“混沌吸引子”为中介辩证地联结在一起。在相空间中混沌吸引子的精巧的无穷嵌套的自相似结构,精确而形象地展示出系统演化过程中机遇与因果如何联合起作用的深层非线性机制,进一步丰富了对自然本体辩证内涵的认识。
应当说,这是量子辩证法与系统辩证法对矛盾辩证法的一项贡献,它们本应是相得益彰的。
参考文献
〔1〕桂起权:《目的论自然哲学之复活》,载“自然辩证法研究”1995(7),并收入吴国盛主编《自然哲学》一书,中国社科出版社1994年版。
〔2〕《马克思恩格斯全集》第20卷。
〔3〕海森伯:《物理学与哲学》商务印书馆1984年版。
〔4〕海森伯:《严密自然科学基础近年来的变化》上海译文出版社1978年版。
〔5〕《武谷三男物理学方法论论文集》商务印书馆1975年版。
〔6〕波普:《客观知识》,上海译文出版社1987年版。
〔7〕桂起权:《非完全决定论:因果与机遇的辩证综合》,载“科学技术与辩证法”1991(2)。
〔8〕玻恩:《关于因果和机遇的自然哲学》商务印书馆1964年版。
〔9〕莫诺:《偶然性与必然性(略论现代生物学的自然哲学)》,上海人民出版社1977年版。
〔10〕桂起权:《科学思想的源流》武汉大学出版社1994年版。
〔11〕桂来权《析量子力学中的辩证法思想—玻尔互补性构架之真谛》,载“哲学研究”1994(10)。
〔12〕罗森菲尔德:《量子革命》商务印书馆1991年版。
注释:
[1]正是在这一意义上,梁实秋在《远东英汉大辞典》中,将控制论(cybernetics)译作神经机械学。
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾
十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。
1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。
2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。
我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。
3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。
上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]
现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:
1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。
2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。
二、现代物理学的理论基础是完美的吗?
相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的
呢?我们来审思一下这个问题。
1)对相对论的审思
当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。
时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。
爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。
我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。
弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。
在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')
有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。
1)对量子力学的审思
从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。
现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。
1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。
2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾
十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。
1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。
2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。
我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。
3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。
上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]
现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:
1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。
2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。
三、现代物理学的理论基础是完美的吗?
相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的
呢?我们来审思一下这个问题。
1)对相对论的审思
当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。
时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。
爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。
我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。
弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。
在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')
有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。
1)对量子力学的审思
从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。
现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。
1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。
2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论
【关键词】后现代科学/现代科学范式/后现代知识
【正文】
近年以来,后现代主义沸沸扬扬,“后现代科学”也成为一个时髦的名词。似有“忽如一夜春风来”,后现代科学也如“梨花”盛开。问题是,后现代科学真能如此“盛开”吗?本文首先考察现代科学具有什么样的范式;其次,考察后现代科学有什么样的特征,它的依据是什么,这些依据是否使现代科学范式渐趋式微?科学还要“返魅”吗?如若不然,后现代科学又是在何种意义上有其价值?
1现代科学范式
1.1自近代以来,科学与哲学发生分离,科学与宗教神学发生决裂。经过以伽利略、牛顿为代表的第一次科学革命和以能量守恒与转化定律、电磁学理论为标志的第二次科学革命,到19世纪末,确立了近代科学的基本范式。与两次科学革命相对应,发生了两次工业革命,推动了科学制度、经济制度和社会制度的创新,到19世纪末,欧洲、北美基本上实现了现代化,它们为世界不发达国家展示出崭新的未来前景。
正是在这样一种氛围中,值19—20世纪之交的时刻,许多著名科学家认为经典物理学的大厦业已建立,只需对大厦作一些修补工作,晴朗的天空仅有两朵乌云,殊不知,这两朵乌云却引发了20世纪初相对论、量子力学的诞生。在世纪之交早就为科学家彭加勒注意到的初始条件的敏感性,也引发了60—80年代的混沌学的诞生。相对论、量子力学和混沌学是同一水平的革命,同属于第三次科学革命,它们从三个方面给牛顿力学施加了限制。如一位物理学家说:相对论排除了绝对空间和时间的牛顿幻觉;量子论排除了对可控测量过程的牛顿迷梦;混沌则排除了拉普拉斯决定论的可预见性的狂想。〔1〕可见,第三次科学革命否定了机械自然观。但是,第三次科学革命并没有摧毁由第一、二次科学革命确立的科学范式,而且,它们共同构建了现代科学范式。
需要指出的是,在我国一般把20世纪之前的科学称为近代科学,20世纪之后的科学称之为现代科学。但是,在西方,则通称为现代科学。西方没有近、现代之分,只有现代(modern)一词。正如现代化研究专家罗荣渠指出:“在英文里(法文、西班牙文、德文、俄文等也同样),‘现代’一词至少有两层含义:一层是作为时间尺度,它泛指从中世纪结束以来一直延续到今天的一个‘长过程’;一层是作为价值尺度,它指区别于中世纪的新时代精神与特征”。〔2〕
1.2我们首先看一下“范式”这一概念。范式(paradigm)是由科学哲学家库恩(T.Kuhn)在《科学革命的结构》一书提出来的。库恩没有给范式下一个明确的定义,解释不一。大体上是指科学共同体成员共有的研究传统、理论框架、理论上和方法上的信念、科学的模型和具体运用的范例等,还包括指导和联系理论体系与心理认识的自然观或世界观,后来他又称之为专业基质(disciplinarymatrix)。在库恩看来:“‘范式’一词,无论实际上还是逻辑上都很接近于科学共同体这个词;反过来说,也正是由于他们掌握了共有的范式才组成了这个科学共同体”。〔3〕“科学共同体”指的是在科学发展的某一历史时期该学科领域中持有共同的基本观点、基本理论和基本方法的科学家集团。大体讲,库恩所指的“范式”包含两方面的涵义:(1)从心理上讲,它是指科学共同体所共有的信念;(2)从理论与方法上讲,它是指科学共同体所共同具有的模型或框架。科学共同体还可分为许多级。全体自然科学家成为一个最大的科学共同体。
1.3我们认为,现代科学范式由以下部分组成:(1)近、现代自然科学家所共同拥有的信念(如科学目标、科学的社会规范、自然观等);(2)建构科学理论所必须遵从的规范和方法论原则;(3)还包括科学与技术、经济、社会、文化、宗教神学等的关系规范。大体讲,现代科学范式的具体内容主要有:
1.3.1关于科学的目标。到18—19世纪,人们普遍形成了无误论的观点,即认为科学是由真命题构成的系统。科学无误论认为科学目标是追求真知识,即绝对确定的可证明的知识。到20世纪,逻辑实证主义认为,科学是具有一定预言值的命题系统,科学的目标旨在追求高概率的理论(命题)。波普尔则认为科学的目标旨在提高理论的逼真度,追求逼真度更大的理论。而在马克思主义者看来,科学目标是与真理问题相联系的。科学是一项理性的事业,其目标是科学真理,而且科学真理是相对真理与绝对真理的统一。科学的目标是不断向绝对真理逼近。
1.3.2关于建构科学理论所必须遵从的规范或原则。这一规范凸显了科学理论与其它理论(或知识)相区别的根本性特征。就科学理论所遵从的规范而言,大致有预设主义和相对主义两类观点。预设主义是合理性的传统模式,它以逻辑推理作为合理性的形式,其次以经验检验作为合理性的最终标准。譬如,逻辑经验主义认为,理论的评价或选择与这个理论的形式结构和它引出的经验证据有关。相对主义认为预设主义观点极为片面。历史主义者库恩就说,逻辑形式与观察实验不能决定相对立的理论或范式,因为范式各方面的支持者都有一套彼此相异的评判标准。
尽管预设主义与相对主义相对立,但是或多或少可以接受的共同评价规范还是有的。至少,狭义地讲,科学是一个陈述系统,该系统满足一些基本规范。这些规范构建了科学不同于其它人类知识的典型特征,可以称之为建构科学理论体系的基本原则。这些原则具体包括:内在一致性(理论的逻辑无矛盾),可检验性(经验实证性),解释性(预见性,特别是能预见新的不同类的科学事实),逻辑简单性等。这些原则实际上反映了科学理性的基本内核。
1.3.3关于构建科学理论的方法论原则。为什么要选择这样一种方法或规则,而不选择别的?这关涉到科学方法的根据。预设主义坚持方法论的一元论,认为科学方法论作为科学的逻辑是一套对科学进行逻辑分析的元科学,它给出一切理论都应具有的永恒不变的公理结构,即注重逻辑形式而不关注内容。与此相反,相对主义坚持方法论的多元论。历史主义认为,重要的不是科学形式,而是科学的内容,其原因在于科学的一切随社会文化条件而转移。我们认为,科学方法论应当在一元与多元、变与不变之间保持适当的张力。虽然科学方法随科学的发展而变化,但是一些基本的科学方法却没有多大的变化,只是在科学发展的不同时期凸现了不同的科学方法。科学愈向高级阶段发展,其抽象性愈高,假设一演绎法愈受到重视。
1.3.4关于科学的社会规范。科学的社会规范支配着所有从事科学活动的人,同时成为科学活动的行为规范。倘若没有这些规范,就无法产生重要的科学问题,无法评价科学活动的成果,奖励卓有成效的科学家。科学的社会规范主要有:普遍性、竞争性、公有性、诚实性和合理的怀疑性。科学的社会规范被默顿(R·Merton)称之为科学的精神气质。他指出:“科学的精神气质是有感情情调的一套约束科学家的价值和规范的综合。这些规范用命令、禁止、偏爱、赞同的形式来表示。它们借助于习俗的价值而获得其合法地位。这些通过格言和例证来传达、通过法令而增强的规则在不同程度上被科学家内在化了,于是形成了他的科学良心”。〔4〕科学的社会规范构成了科学区别于人类其它活动的基本特征。
1.3.5关于科学与宗教神学之间的关系。尽管科学与宗教神学之间的关系较为复杂,但是科学体系与上帝、神毫无关系。现代科学是与“自然的祛魅”(disenchantment)相联系的。所谓“自然的祛魅”,按后现代主义者格里芬(D·R·Griffin)的说法,“它意味着否认自然具有任何的主体性、经验和感觉”。〔5〕虽然人类文明初期的许多知识被宗教神学家篡改,为其神学目的服务,但是,具体的宗教教义是和相关科学的结论或原理相冲突的。罗素指出:“神学与科学的冲突,也就是权威与观察的冲突”。〔6〕科学与宗教的本质区别在于科学的实证性与宗教的信仰性,二者是难以简单调和的。
1.3.6关于科学与政府之间的关系。自近代科学以来,科学与政府的关系日趋紧密。特别是20世纪以来,科学已向人类社会的各个领域全面渗透,知识经济的来临,科学技术成为第一生产力,科学与政府权力日益整合。科学的问题在很大程度上已是一个政府的问题。没有政府的赞助,科学难以发展。政府的不正当要求也会使科学迷失方向,甚至堕落。因此,科学的合法发展要由合法性的政府来规范。但是,当代合法的政府却存在合法性危机(如政治危机、经济危机和文化危机等等),为此,需要各国政府和国际社会一道制定合理的规范制约政府的行为,保证科学的合理合法的发展,保证科学指向人类进步的向度。
以上我们仅论及了现代科学规范的几个主要方面,其中1.3.1、1.3.2、1.3.3三节构成了科学的内在规范,1.3.4、1.3.5、1.3.6三节构成了科学的外在规范。内在规范中1.3.2,即“建构科学理论所必须遵从的规范或原则”凸显了科学理论与其它人文知识的本质区别,界定了科学理论的本质规定性,换言之,它是现代科学范式的核心,是硬核,难以改变。科学的内在规范是科学范式的主要方面,对科学的发展起决定性作用;外在规范是次要方面,非本质的。但是,在一定条件下,外在规范也可能对科学的发展起决定性作用。
2后现代科学可以成立吗?
2.1西方发达资本主义国家自50年代向后工业社会过渡,60年代出现了后现代主义思潮。90年代在我国,后现代主义也大行其道。当代主要后现代主义哲学家的理论各有特点,虽有冲突,但是,他们主要从哲学层面出发,其共同点体现在:反对(否定、超越)传统形而上学、体系哲学、心物二元论、基础主义、本质主义、理性主义、人类中心主义、一元论和决定论等,可称为否定性或解构性的后现代主义。与此相反,格里芬等人则从人与世界、人与自然的关系问题,在很大程度上是从科学的层面出发,探讨更为广泛的问题,倡导建设性的后现代主义,主张人与世界、物质与意识、价值与事实、真与善与美的统一,主张科学应当“返魅”(reenchantment)。这些观点较为集中地反映在由格里芬主编的《后现代科学—科学魅力的再现》一书中。参加此书撰写的学者既有科学家,也有从事神学、灵学研究的学者。其中包括著名物理学家大卫·玻姆(DavidBohm)。凡了解量子力学的读者一定会知道玻姆,他的思想极为深刻。比如,在著名物理学家爱因斯坦与玻尔关于量子力学是否完备的论战中,爱因斯坦等人于1937年提出了一个关于坐标与动量关联的理想的EPR实验来反驳玻尔。50年代玻姆则从自旋的三个分量着手提出了具有可操作性的自旋EPR实验方案。目前EPR的检验仍然是物理学的前沿之一,直接涉及到量子力学是否完备这一重大问题。(参见吴国林《从微观物质开放性角度审视ERP佯谬》,《科学技术与辩证法》,1997年第1期)。
2.2近年来后现代主义之所以能够迅速传播,就在于人们对现代性愈来愈不满足。譬如,当代有人口问题、资源问题、环境问题、两次世界大战带来的巨大灾难等等。就中国而言,自1978年改革开放以来,一方面,经济高速增长,经济“软着陆”成功;另一方面,中国的生态环境迅速恶化。随着计划经济向市场经济转变,人们的思想观念也发生了相当大的变化。对外开放使外域之风也迅速吹向国内。总之,种种因素使后现代主义在我国迅速传播,这也表明了国人对我国正在进行的现代化运动的急切关注和深思。
无疑,外域之风并非都是清新馨香的,保持谨慎的批判态度是必要的,只有如此,我们才能更好地建设我国的现代化与信息化。实际上,许多西方学者早就注意到,晚期资本主义文化领域完全渗透了资本和资本的逻辑,渗透了商品的逻辑,而且,晚期资本主义文化正向全球蔓延,对于经济落后的第三世界国家极为不利。西方马克思主义者杰姆逊(F·Jameson)就指出:“中国读者也应该抵制后现代社会的某些特征,其实也就是晚期(资本主义),但同样是彻头彻尾的资本主义文化逻辑的一部分,这些特征从内容到形式完全溶入到商品生产和消费中,尽管具有新的类型”。〔7〕
2.3在当代,科学或知识或信息的作用日益凸显。80年代经济学家罗默(P·Romer)、卢卡斯(R·Lucas)等人提出了新经济增长理论,知识成为内生变量,知识内在地推动经济发展。1996年经合组织第一次明确提出了知识经济是以知识为基础的经济,人类将步入一个以知识资源的占有、配置、生产、分配和消费为最重要因素的经济时代。我国业已制定的《技术创新工程》、《211工程》,《知识创新工程》正处于试点阶段。无疑,推动经济增长最重要的知识是科学知识,其根源是科学。所谓科学,就是系统化的知识;反过来,知识则不一定是系统化的。知识包括人文知识与科学知识。一般所指的科学,是指自然科学。自然科学具有实证性。科学与知识的区别在于,科学是系统化的实证性的知识,而且如前所述现代科学已形成了自身的范式,这一范式也没有因为后现代主义思潮发生突变。
2.4虽然,早在19世纪之前就发生过反现代运动,如始于19世纪初的浪漫主义者和卢德派的反现代运动。1755年卢梭在其专著《论人类不平等的起源和基础》一书中对科学和艺术,进而对整个人类的文明进步,都持否定态度。本世纪法兰克福学派也对科学技术进行过批判。他们把科学技术看作新的意识形态,认为科学技术具有压抑人、统治人的功能。马尔库塞主张要彻底否定科学技术成果。但是,当前后现代主义的反现代情绪比以往任何时候都要普遍和强烈。如果说后现代主义可以概括为格里芬所言:“它指的是一种广泛的情绪而不是任何共同的教条——即一种认为人类可以而且必须超越现代的情绪”。“后现代世界是一种新的科学、一种新的精神和一种新的社会”。〔8〕那么,具有严格规范要求的“科学”如何可能与后现代主义“情绪”相调适呢?
2.4.1在格里芬等人看来,后现代科学应当有什么特征呢?他们反对科学必然和一种“祛魅”的世界观相联盟,其中没有宗教意义和道德价值,即顽固的自然主义。主张灵活的自然主义,即认为“自由、价值的客观实在性,神在世界中作用(通过它的作用,价值才得以在我们生活中产生影响)、生态伦理以及对泛心理学,如超感观视觉、心灵感应以及中国气功师的外气发放等问题的研究,甚至死后生命问题等等,都占有一席之地”。〔9〕一言以蔽之,后现代科学的特征大致可概括为:整体论和有机论。
2.4.2在格里芬看来,后现代科学背离了与现代科学密切相关的机械论和还原论的世界观,根源于科学本身实质性的进展。的确,玻姆发展了一种隐变量的量子理论,提出了一个包含环境信息的量子势概念,由此他认为:“世界不能真正分解成彼此分离的部分,而必须把它看成一个不可分的统一体,其分离部分的出现,只是作为一种仅仅在经典极限下才有效的近似”。“从量子尺度看,宇宙是一个不可分的整体,它不能真正看成是由彼此分离的独立部分构成的。”〔10〕从物理上讲,这是正确的。后来,他又提出了显序和隐序概念,他认为,整体包含于每一部分之中,部分被展开成为整体。无疑,这已是物理哲学的概括了。在玻姆看来,“后现代物理学,广而言之,后现代科学”,“不应将物质与意识割裂开来,因而也不应将事实、意义及价值割裂开来”。〔11〕这只能是更有哲学意味了。诚然,近代科学以机械论、还原论为特征,现代科学以整体论为特征。且不说,在西文意义上,近代科学与现代科学是同一概念,仅以科学史来看,是先有科学实验、科学发现、科学理论,后有科学世界观。换言之,还原论、整体论都是从近现代科学中抽象出来的,它只能看作科学理论的次级意义或社会意义。事实上,还原论、整体论也只能算作科学的外在规范,是非本质的,并不能构成对科学内在规范(核心)的重大冲击。而且整体论也不是抛弃还原论的整体论,而是建立在还原论基础上的整体论。当代科学发展的客观事实是,实践中的科学家在某种意义上都是还原论者,进行还原尝试的方法仍然极富成果。〔12〕
2.4.3后现代的有机论认为,所有原初的个体都是有机体,都具有哪怕是些许的目的因。原初的有机体可以被组织成两种形式:(1)一个是复合的个体,它产生于一个无所不包的主体,(2)一个是非个体化的客体,它不存在统一的主体性。动物属第一类。石头属第二类。后现代的有机论认为,不存在什么本体论的二元论,但存在着一种组织的二元论。〔13〕我们认为这一观点是站不住脚的。按后现代的有机论看来,宇宙的原初总应当看作一个有机体吧!总应包含些许的目的因吧!但是,描述宇宙原初的物质状态,是用宇宙波函数表达的。宇宙波函数仅有引力场和物质场。当代著名的理论物理学家、宇宙学家霍金(S·W·Hawking)发展的“无边界”量子宇宙学已粗略地给出了宇宙的创生与演化过程。实质上,它否定了任何目的论、否定了上帝或神秘力量的存在。正如卡尔·萨根在为霍金的名著《时间史之谜》一书中所做的“导言”中指出:“这还是一本关于上帝……或许关于上帝不存在的书”。“正如霍金明确指出的,他试图理解上帝的思想。这使他的努力所得的结论越加出人意料之外,至少到目前为止是如此:一个没有空间边缘、没有时间起点或终点,以及没有上帝可做事情的宇宙”。〔14〕
2.4.4克里普纳(S·Krippner)在《灵学与后现代科学》一文中说:“不仅量子论指出无法区分一个‘观察者’和一个‘被观察者’,而且它还可以通过将意识完全并入科学研究的主流中来而得到解释”。虽然在量子力学的观察者与被观察者关系上有许多争论,但是,观察者也没有将自己的意识并入量子过程中。事实上,观察者是宏观物体,量子过程是微观过程,两者之间有本质区别。量子现象是微观客体与宏观外界共同作用的结果。物理学家玻姆曾明确指出:“我不认为精神对原子有重要的效应,至少人类精神对原子没有影响”。〔15〕与玻姆长期合作的海利(B·Hiley)教授认为:“我不明白为何在现阶段需要把精神引入到物理学中来”。现在用量子势来表达,就不会陷入量子理论的多宇宙解释所造成的精神介入困境。〔16〕
2.4.5格里芬认为,自然的祛魅的一个深刻而主要的特征是否认“远距离作用”。韦伯在形容祛魅一词时,含有“驱除魅力”的含义。机械论的中心内容就是否定自然事物有任何吸引其它事物的隐匿(神秘)的力量。〔17〕事实上,从已有的关于EPR实验的结果来看,绝大多数支持量子力学是完备的,这也意味着量子力学中波函数之间的联系是瞬时的,也即是远距离作用;玻姆倡导的非定域的量子势概念也是远距离作用的。可见,从物理上讲,微观客体可以存在“远距作用”,尽管现代物理学(如粒子物理学)仍然建立在近距作用基础上。科学的一个基本原则是用自然说明自然,否认任何神秘作用。由EPR实验所表征的“远距作用”与灵学中的超心理现象、心灵致动、“中国大气功师”所宣称的“他心通”、“遥视”等“特异功能”的“远距作用”具有本质区别。科学坚持重复检验原则,一个科学事实是可以在相同的实验条件和实验程式下重复出现,至少存在相当高的概率。一个事实不能得到较高概率或重复出现就不能被证认为科学事实。〔18〕灵学中宣称的心灵感应、气功中的“特异功能”几乎没有在科学的严格规范下重复出现,“大师”们也没有显出比常人有更大的本领。然而灵学家、大气功师们却把结果的不可重复归因于:心不诚则不灵,有人干扰气场,没有进入气功状态等,无疑这是遁词。可见,科学不是简单肯定或否定远距作用,科学必须建立在具有可重复性检验的科学事实上。不可重复的事实,其真伪性无法判定,由此彰显了科学与灵学的区别。
2.5如果说后现代科学是可能的,那么后现代科学的范式是什么呢?格里芬在《论心与分子:心身相关宇宙中的后现代医学》一文中有所表达。在他看来,二元论和唯物论是17世纪以来统治现代社会的两种范式,可具体归纳为:客观论、现象论、移动论、机械决定论、还原论和感觉论,这样一来,世界的基本构成要素是“空洞的实在”,全然不存在内在的实在、感知或经验、主观性、目的以及一切的内在的生成。但是,这种论点是可疑的。由此,格里芬提出了后现代范式的依据——泛经验论,用以表述后现代科学的基本性格和方向。
2.5.1格里芬的泛经验论建立在怀特海和哈茨霍恩哲学的基础之上,是一种后现代的有机选择论。泛经验论的具体要点可概括为:(1)每一实际存在都是一个实际活动,亦被称为一个经验活动。(2)自为的经验是一个作为主体的事件。事件作为主体,它被涉入一个简短的生成过程中。作为主体的经验活动将感受(肉体性)与自决(精神性)结合在一起。(3)一个客体就是一个原本实质上的主体事件,主体与客体的不同仅表现在时间上。(4)“心”与“分子”是一系列先主体后客体的事件。它们之间的差异只是程度上的差异,而不是是否具有经验这种绝对的差异。(5)每一种永恒的事物都是一个由一系列迅速发生的事件所组成的时间上的“群集”。事件是最基本的个体。一个事件的“运动”不是移动,而是内部生成。(6)内部生成是第一性的,移动是派生的。(7)每一新的经验都是产生于许多经验之上的集合体。合众为一是经验的终极实质。实际上,它就是宇宙的终极原因。(8)实在是完完全全群集的,不存在只保持其本来面目的永恒的实在,存在的仅是事件和事件的群集。(9)每一层次的个体都是有机体的一个层次。心理学和生物学研究较高层次的有机体。人类是具有等级结构的有机体:是有机体的有机体的有机体。〔19〕据此,格里芬断言,心会受到身体内一切活动的影响,同时,身体内的一切活动也会受到心的影响——这是与现代范式截然不同的看法。
2.5.2不难看出,泛经验论是有一定启发意义的,是一种后现代性质的本体论。正如格里芬自己承认:“当然,泛经验论是有一种未被证实的假设”。但是他又认为:“低级存在不具有任何形式的经验的观点亦未被证实。验证每一假设的途径只能是考察这一假设所导致的结论”。〔20〕中国几千年的气功实践,无疑证明了心和身是相关的,但是,要把人类具有的经验内涵泛化到分子也具有经验,显然是外延太大了。不仅在逻辑上是不成立的,而且在科学实践中也没有被证实。我们知道,一个科学理论除了满足逻辑一致、经验实证性和解释性之外,还有一个重要的标志:科学理论必须能够预见新的不同类的科学事实,而且愈多愈好。比如,爱因斯坦的广义相对论,首先预言了光线弯曲,这与“光线为直线”的日常经验不一致,是一类新的经验。后来,广义相对论还预见了雷达回波延迟、黑洞等新的物理现象。那么,泛经验论的推论又预见了什么新的事实呢?用泛经验论可以解释医学中业已存在的心身相关问题,并没有什么特别之处,它能否在物理、化学等无生命物质世界逻辑地预见一个新的事实呢?显然,目前没有这样的事例。我相信,今后也不会出现。因此,泛经验论也只能是一种哲学思辨式的无根的假设,而不是一个具有可检验性的科学假设。可见,企图建立于泛经验论这一基础之上的后现代科学,无异于空中楼阁。不仅结不了果,甚至连花也开放不了。
2.6后现代科学空疏的根本原因在于,现代科学范式没有突变,现代科学没有发生危机。
2.6.1牛顿的第一次科学革命确立了机械论自然观思想,第二次科学革命确立了世界是联系的发展的辩证的自然观,第三次科学革命否定了机械论自然观、否定了自然的不变性和预成性,否定了决定论和确定性,代之以世界的生成性和不确定性,凸显了不确定性的重要地位。虽然从第一次、第二次到第三次科学革命,自然观上有较大的变化,也就是说,现代科学的某些外在规范发生了变化,但是,科学的内在规范——现代科学范式的核心部分(如建构科学理论的规范或原则等)——却没有受到冲击,经受住了科学发展的检验。
2.6.2就现代科学自身而言,特别是带头科学——物理学与生物学,它们不仅没有危机发生,反而生机一片,有力地促进了信息社会、知识经济时代的来临。按照库恩的科学发展模式:常规科学危机科学革命新的常规科学……。只有现代科学发生危机,科学革命才能发生。如果说现代科学有危机发生,至多只能说有危机的征兆(主要是指外在规范问题),而没有冲击现代科学范式的内在规范。既然现代科学范式没有本质的危机,那么科学革命就不可能发生,亦即不可能发生从旧范式向新范式的过渡。
2.6.3仅仅依持科学规范发生的某些变化,仅仅停留在“祛魅”、“返魅”、“物质有痛苦”、“磁石有灵魂”等词语的编排上,显然是不可能符咒般地呼唤出后现代科学。既然如此,又为何极力呼喊后现代科学呢?难道我们还不能洞见到文化中渗透了商品的逻辑吗?
2.7我们认为,在后现代主义思潮中,后现代科学更多的是一种哲学观念。例如,玻姆在《后现代科学和后现代世界》一文中,提出了后现代物理学。他说,相对论与量子力学的共同点是同意宇宙是一个完整的整体,量子论的数学定律可以被理解为对整体运动的描述,在这一整体运动中,部分被展开为整体。后现代物理学应从整体出发。〔21〕可见,玻姆的后现代物理学也只是一个思路,没有具体的操作意义,对量子力学的重新理解也不过是变换了一个视角。法国哲学家利奥塔(J·F·Lyotard)在《后现代状态——关于知识的报告》一书中也谈到后现代科学,他说:“后现代科学本身发展为如下的理论化表述:不连续性、突变性、非矫正性以及佯谬。后现代科学对以下事物关切备至:不可决定的、精确控制的极限、以不完全信息表征的冲突、破碎的、突变和语用学悖论等”。〔22〕这些特征是与量子力学、突变论、混沌学、耗散结构论等有明显的联系,但是,这些学科却都是属于现代科学,而不是后现代科学。因此,我宁愿把现在所谓的“后现代科学”称之为“后现代知识”,即在现代科学范式下可以合理存在着后现代知识,后现代知识以不确定性为标志。其原因在于:科学是一种严格的体系,有一定的稳定性和确定性,而知识则不一定,可以没有体系要求。目前所称的“后现代科学”更没有什么体系可言,只是一种哲学式的假设罢了。从科学的角度看,后现代知识可以从1927年量子力学不确定性原理的提出作为肇始的标志。到50年达资本主义国家向后工业社会过渡之时,后现代知识才成为浩浩江河,特别是90年代知识经济的出现,后现代知识已势不可挡。〔23〕
3结语
尽管后现代科学难以成立,但是,后现代科学力图克服现代科学种种弊端,以达澄明之境;后现代科学对人类发展所表现出的深切关怀和焦虑,因此,它是有意义的。然而,有意义的东西不一定要冠之以“科学”称谓,不如称之为“后现代知识”。要使后现代科学真正成为可能,不仅需要哲学家、宗教学家等人文学者的努力,而且更重要的是,现代科学自身已发生了危机、发生了范式嬗变;不仅要有概念变革的先行,而且要有实践运作的科学具体操作层面的突变,要有科学方法的变革。目前看来,后现代科学所具有的意义,或许从观念逐渐浸润的视角加以评价更为恰当些,而操作意义上的工作还远没有展开。而这种展开目前看不见明显的征兆。
在我看来,在现代科学范式下,人类仍有现实的可行策略,即通过“立法”——制度创新——来化解现代科学带来的弊端,减少现代科学带来的不确定性。在科学如此发达的今天,人类可以通过各国政府及政府间的合作达成某些共识,利用人类文化(包括宗教、伦理等)的精粹,构建若干科学规范——“科学法”——规导现代科学,使科学更好地为人类社会的可持续发展服务。〔24〕从某种意义上讲,这或许是一种现代科学范式下的“后现代知识”状态。也正是中国当前所需要的有益的“后现代”策略。
【参考文献】
〔1〕詹姆斯·格莱克:《混沌,开创新科学》,上海译文出版社,1990,6。
〔2〕罗荣渠:《现代化新论》,北京大学出版社,1993,5~6。
〔3〕库恩:《必要的张力》,福建人民出版社,1980,291。
〔4〕默顿:科学的规范结构,《科学与哲学》,1982,(4):121。
〔5〕〔8〕〔9〕〔11〕〔13〕〔17〕〔19〕〔20〕〔21〕格里芬编,《后现代科学》,中央编译出版社,1995,2,中译本序言,中译本序言,76,28,3,199,193,85。
〔6〕罗素:《宗教与科学》,商务印书馆,1982,6。
〔7〕杰姆逊:《后现代主义与文化理论》,北京大学出版社,1997,自序。
〔10〕美玻姆:《量子理论》,商务印书馆,1982,192,193。
〔11〕格里芬编,《后现代科学》,中央编译出版社,1995,2,中译本序言,中译本序言,76,28,3,199,193,85。
〔12〕黄顺基等主编,《科学技术哲学引论》,中国人民大学出版社,1994,322—323。
〔14〕斯蒂芬·霍金著:《时间史之谜》,上海人民出版社,1991,导言。
〔15〕〔16〕英戴维斯,布朗合编,《原子中的幽灵》,湖南科技出版社,1992,106,129。
〔18〕吴国林:以概率确证审视气功“特异功能”之真伪,《气功与科学》,1998,(1),14。
〔22〕J·F·Lyotard,ThePostmodernCondition:AReportonKnowledge,theUniversityofMinnesota,1984,pp.60。
【关键词】化学概念物质的量概念隐喻理论诱思探究教学法
【中图分类号】G【文献标识码】A
【文章编号】0450-9889(2017)03B-0142-03
总所周知,化学1是高一刚入学学生的必修课程,在整个高中化学课程体系中占据非常重要的地位,必不可少。化学1的学习可以进一步提高学生未来发展所需的科学素养,同时也为学生学习其他化学课程模块提供基础。化学1的内容具有基础性和全面性,主要包含三大知识板块:化学实验基础知识、认识化学学科和常见元素及其化合物。其中,在认识化学学科知识中,难点是概念教学,如体现分类观的“物质的分类”,体现微观思想和定量思维的“物质的量”系列概念,等等。可以说概念教学是高中课程教学的核心部分,而“物质的量”又是核心概念体系中的核心部分,在整个高中化学知识学习中必不可少。它联系着宏观和微观,联系着定量和定性,抽象深奥,难以理解。掌握这一基本概念,既有利于学生运用宏观和微观相结合的思维方法思考化学问题,又有助于学生定量表征化学反应,促进教学中的相关理论与实际相互融合化以及相关化学知识的系统化,“物质的量”概念教学一直是众多老师的关注点。
然而,现实教学中教师易忽略概念教学,往往采取以解题教学或者陈述知识教学等代替概念教学。这样的教学仅仅将学习看成是知识获取而不看重知识生成性,采用“一个定义,几项注意”的教学方式,没有从概念的背景引入上给学生足够的思维空间,没有给学生提供充分体会概括本质特征的机会,容易造成学生被动机械性地接受知识。特别在章节起始时,能否从整章知识体系以及相关概念的关联角度考虑本章节要解决的主要问题和主要思想方法以及基本过程等,这是部分教师容易忽略的教学任务,忽略章节起始的重要作用。再加上“物质的量”概念的抽象与陌生,造成学生对“物质的量”概念的学习产生困惑。所以如何有效进行“物质的量”概念的教学,解决学生思维困境显得至关重要。
一、概念隐喻理论对教学引入的启示
面对刚入高中的新生来说,身心与智力水平均处于发展的初级阶段。虽有一定的抽象思维能力,但不够高,很大程度上还属于感性经验支持的经验型者,对知识的理解需从身边熟悉的、宏观的、具体的事物角度思考和领会。而“物质的量”是一个陌生而又全新的概念,远离学生的日常生活,却又是用于计量学生看不见、摸不着的原子、离子、分子等微观粒子的物理量,抽象y懂。学生需要较强的或较好的抽象、逻辑思维能力,将研究视野中的宏观世界与微观世界联系起来,才能理解。可见,“物质的量”概念的引入,是学生化学概念学习的一个思维困惑点。此外,对学生而言,以“物质的量”为核心的相关系列概念,如“阿伏加德罗常数”“物质的量浓度”等概念聚集在一起,具有高密度的认知陌生性,这也是对学生认知水平和思维能力的一个挑战。
概念隐喻理论认为:“人类的抽象概念系统是以感知经验和具体概念为基础发展形成的。”Lakof和Johnson认为:“概念隐喻最主要及最基本的功能是从一个基于人类对自身的认识和自然界相互联系的、已知的、熟悉的具体的源域映射到一个未知的、陌生的、抽象的目的域。简单地讲,概念隐喻最主要的功能就是通过人们所认知的具体经验知识来理解抽象的概念,从而形成抽象思维。”
如何在学生有限的思维逻辑能力和认识水平下帮助学生接受和理解“物质的量”概念?概念隐喻理论提到科学概念的形成总是与学生所认知的具体经验知识相联系,由具体到抽象,由简单到复杂,它符合学生认知发展规律。“物质的量”概念教学,能否选取学生熟悉的、恰当的、具体的事物作为教学载体,采用类比、集合的方法,来减少学生的陌生感呢?
因此,在本节课的概念教学设计上,笔者在背景的引入上重着笔墨,以学生耳熟能详的“曹冲称象”故事作为知识载体,创设问题情境:“你知道古代曹冲称象的故事吗?曹冲在称象时的指导思想是什么?”引发学生思考解决该问题的关键在哪里?随后列举日常生活中的“一打”“一件”等例子,初步架起定量的概念。紧接着教师再次提出问题“如何称量1粒大米质量?”再让学生体会解决该问题的关键点,就是集合思想,即转化思维,化小为大、聚微为宏的思想。
教学设计摘录如下:
情景一:生活中的计量
〖问题〗如果请你快速拿出200个曲别针,你会怎么做呢?(再次体会积小成大、聚微为宏的便捷性)
〖教师〗12只铅笔是一打,24瓶啤酒是一件,20只香烟是一盒,10盒香烟是一条。(借助日常例子,让学生体会生活中积小成大、聚微为宏的思想在日常生活中的应用)
情景二:化学实验中的计量
〖问题〗回顾初中一个化学方程并提问:
2H2+O2=2H2O(点燃)
〖教师〗那么,2gH2,32gO2,36gH2O中各含有多少个分子呢?(从化学情景中再次让学生体会积小成大、聚微为宏的思想,进而体会引入新概念的必要性)
从日常生活中熟悉的计量出发,提出问题,引导学生思考计量在生活中应用的目的就是“化繁为简”。进而引导到学生不熟悉的化学试验中的计量,提出概念引入的必要性。这样可以使学生从已知的、熟悉的具体的源域映射到一个未知的、陌生的、抽象的目的域,减少陌生感,使学生较容易接受新概念,进而激发学生进一步去探索新知识的兴趣,同时架构定量思维与集合思想。
二、“诱思探究”教学法理论对问题设计的启示
“诱思探究”教学法:“教师结合学生在课堂中的动态生成,在学生对高难度知识进行探索、反思和讨论的过程中,捕捉学生思维中的闪光点,适时进行点拨引导,建立一定的思维方向,使学生进行自我攻克和创新突破,从而提高学生的探究热情,激励学生的学习斗志,取得更好的课堂效果。”
新课标教学理念要求“以学生为本,以学生终身发展为目的”。那么,对于身心与智力水平还处于初级阶段的高一新生而言,关键在于教师能否教会学生思考,教会学生能够用自己已储备的知识与能力对事物观察分析、积极主动探索、思考探究并解决未知领域,形成终身学习能力,而非“填鸭式”的教学,对知识死记硬背、生搬硬套。
“诱思探究”教学法理论主要是以“诱”代“讲”,开启学生的思维。当学生在学习实践中面对困境r,如何思考。教师要不断地捕获动态课堂中生成的动态思维点,然后切实点拨,激发学生的思维点,适时推进,引导学生积极整合自己的旧知来分析、解决问题。学生在尝试解决问题的过程中,需要不断地克服困难,一步步走进问题的核心,使学生的思维能力与学习能力得到提高。这种教学模式充分体现学生在课堂上的主体地位,发挥学生的能动性,注重学生思维能力的培养,弥补“以讲为主”或“精讲多练”传统“填鸭式”教学模式的不足。
(一)架设预设性的思维点(静态)
“物质的量”这节课就是从学生熟悉的生活(如“曹冲称象”、水稻以及曲别针等)或旧知识(如初中所学的化学方程式的意义、水分子等)中提炼相关的化学问题,逐步诱导学生利用已有的知识进行分析问题。由最初体会的“积小成大、聚微成宏”的思想,引导到新概念学习之上。
教学设计摘录如下:
〖引入〗曹冲称象的故事,曹冲解决这一难题的指导思想是什么?(指导思想是化整为零、变大为小)
〖创设问题情境一〗农业科研人员在研究水稻良种培育时,如果在没有精密天平(只有托盘天平)的条件下,如何称量一粒稻谷的质量?(解决这一问题的方法是:积小成大、聚微成宏)
〖创设问题情境二〗如果请你快速拿出200个曲别针,你会怎么做呢?(再次体会日常生活中积小成大、聚微成宏的思想)
〖创设问题情境三〗初中如何描述该化学方程式的意义:2H2+O2=2H2O(点燃)?那么,2gH2,32gO2,36gH2O中各含有多少个分子呢?(用积小成大、聚微成宏方法)
〖创设问题情境四〗水是大家非常熟悉的物质,它是由水分子构成的。一滴水(约0.05mL)大约有1.7万亿亿个水分子。怎样才能科学又快速地确定一滴水中含有多少个水分子呢?(诱发学生思考,联想生活中的计量例子,用积小成大、聚微成宏的思想解决问题。引入概念)
(二)捕获课堂中生成性的思维点(动态)
学生在教师架设思维点的过程中,对“集合”有一定的思考,而且在不断被诱思的过程中,思维处于活跃状态,倾向去解决问题情境四“一滴水(约0.05mL)大约有1.7万亿亿个水分子”。教师此时要及时捕获课堂中思维的生长点,在学生已有的集合思想(定量)知识上,引导学生思考并领会物质的量的引入的必要性以及1摩尔的量等,激发学生的求知欲。学生不断思考并解决问题,从而使其对高难度的核心知识进行自行探索、自我思考,进而自我攻克和创新突破。
教学设计摘录如下:
〖教师追问问题情境四〗要解决这些问题,我们需要架设一座从微观世界通向宏观世界的桥梁,那么,怎样去架设这座桥梁呢?这就是我们这节课要研究讨论的主要内容。(激发学生继续探究的兴趣)
……
〖创设问题情境五〗根据资料卡片(国际单位制的基本物理量),如何认识物质的量?(与熟悉的物理量对比,让学生再次认识这个物理量与时间、质量等类似)
〖教师追问〗物质的量是描述微观粒子多少的物理量。大家可以预测化学中的微观粒子多少个作为一个集团合适呢?也就是说1摩尔的物质中究竟含有多少个微粒呢?能够用一个具体的数字来描述吗?这个数字是如何得到的?(让学生体会到该概念引入要解决的问题及其必要性)
……
(三)注重思维能力的提升
设置阶梯习题,实践检验学生对知识的运用与迁移情况,进一步提升学生思维能力。
教学设计摘录如下:
实践练习一
(1)1molH2O中含有水分子
(2)3molCO2中有个碳原子,个氧原子
(3)2molNaCl中有个钠离子,个氯离子
(4)1.204×1024个氢气分子的物质的量是mol
〖问题〗请同学归纳总结物质的量(n)、微粒数(N)、阿伏加德罗常数(NA)三者之间的换算关系。
实践练
教材【学与问】
实践练习三
如何知道1g水中含有的水分子数。(最后再次回归问题,让学生自己解决该问题,理解此概念和日常生活中的计量的意义类似)
总之,“物质的量”概念虽然比较抽象,但整节课下来,据课堂反馈和课后学生反馈,学生能较容易地接受该概念并能较熟练地应用。本节课充分联系和利用学生熟悉的具体的经验,让学生成功建构这个化学概念,在情景与问题中引导学生思考与探究,使其思维能够沿着教学内容和自身发展进行展开,让学生始终在自己的最近发展区前行,激发学生对问题的思考,积极主动对知识进行分析、探索和搭建,形成新的知识体系,以此推动学生能力的不断提升,为学生终身学习奠定基础。
【基金项目】南宁市教育科学“十三五”规划立项课题资助(2016B012)。
关键词:无机化学;教学难点;梳理;辨析;大学新生
“无机化学”是我校化学专业大一新生的专业课,由于是第一学年开设(第一学期“无机化学”上册内容为:基本概念与基本理论部分,第二学期“无机化学”下册:元素化学及配合物等内容)。长年的教学中所遇到的问题主要有如下几个方面:一是扩招后大学新生基础普遍薄弱,相当部分的学生中学化学知识还没有过关;二是新生适应大学学习生活的能力差,角色变换慢;三是对于现在的学生而言教学内容相对多,课时相对少;四是大环境下高校对学生要求低,要求保证有一定的毕业率和学位授予率,即要减小挂科率,导致学生学习动力不足,竞争意识弱。经过多年的“无机化学”教学,笔者对历届学生的学习情况进行了较长时间的比较与思考,现就扩招下的学生所显现的“无机化学”上册中基本概念与基本理论部分的教学难点进行梳理辨析(注:扩招前学生有的可能并不觉得是难点),以期帮助学生提高学习兴趣,少走弯路,提高学习效率,为后续专业课程夯实基础。目前我们采用武汉大学等学校编写的“无机化学”作为主要教材[1],本文大致依照此教材上册中的教学内容的主要编排次序即物质的状态、原子结构、化学键与分子结构、化学热力学初步、化学反应速率、化学平衡、溶液、电解质溶液、氧化还原反应,进行讲述,不足之处敬请专家同行批评指正。旨在抛砖引玉,共同上好“无机化学”这门课。
1原子结构部分
原子结构与分子结构是“无机化学”最重要也是最难学的两章。由于原子与分子看不见摸不着,属于微观世界,大一新学生普遍觉得原子结构这章内容抽象难懂,不易掌握。那么人们是如何知道原子的核外电子运动及排布的呢?讲解的方法可先给学生梳理一条由宏观到微观、由粗到细、由现象(化学性质)到本质(物质结构)脉络(如图1),让学生先有感性认识再到理性掌握,沿着图1的走向进行反向学习。由图1学生就很快理解为什么教材中要先从氢原子(最简单的单电子原子)光谱入手,由易到难、由表及里进行渐进阐述。讲解本章内容要格外注意帮助学生建立微观粒子与宏观物质的运动方式截然不同,前者的运动具有波粒二象性(符合测不准原理),其运动行为不能套用宏观物质运动的经典力学公式———牛顿定理,而要用统计学的观点,以薛定谔方程来描述。本章节另一个难点是四个量子数,即主量子数n、副量子数或角量子数l、磁量子数m、自旋量子数ms。除了帮助学生理解并掌握4个量子数的物理意义外,更重要的要掌握各量子数的功用。如图2所示,n、l决定多电子原子的电子的能量(其中H原子的电子能量仅由n决定);n、l、m决定电子的空间运动状态,即原子轨道、波函数;n、l、m、ms决定电子在原子核外的运动状态。我们把原子“轨道”叫做电子的空间运动状态,把既有一定空间运动状态又有一定自旋状态的电子称作具有一定运动状态的电子。训练学生必须具备通过关联4个量子数数值计算各电子层中可能有的电子运动状态数的能力。多电子原子的核外电子的排布要遵守三个原理及一个补充规则(俗称三把半钥匙):能量最低原理、保里不相容原理、洪特规则及其一个补充规则(全充满、半充满、或全空规则)。其中学生最难掌握并应用的是能量最低原理,因为必须掌握原子轨道的近似能级序,而大多数人往往是死记硬背。如何让学生能轻而易举的掌握原子轨道的近似能级序呢,笔者采用了如图3的方法帮助学生。图3的形式是二叠V形,即一个大V字母内套一个小V字母,再配上口诀进行讲解,学生感觉形象易懂,效果很好。如果万一忘记了,还可结合我国著名化学家徐光宪将原子轨道的能级近似计算公式对能级进行排序:(1)对于基态原子:n+0.7l;(2)对于基态阳离子:n+0.4l。图3的能量最低原理的能级序口诀:1,22,33,434,545,6456,7567,s开始,p结尾,f靠s,d靠p。口诀释义:1(1s),22(2s2p),33(3s3p),434(4s3d4p),545(5s4d5p),6456(6s4f5d6p),(7s5f6d7p)。图3将能级组、能级组内各原子轨道、元素周期表的分区、各周期的元素数目等知识有机地联系起来了。
2分子结构部分
分子结构与化学键是“无机化学”最重要也最难学的另一章。相邻原子间通过强烈的作用力(即化学键)形成了分子。由于各原子的性质不同,形成了三类不同的化学键即离子键、共价键和金属键。其中通过共价键形成的物质最广泛。为此有关共价键的理论也最多,到目前为止主要有4个,分别是现代价键理论(即电子配对理论简称VB法)、杂化轨道理论、分子轨道理论(简称MO法)、价层电子对互斥理论(简称VSEPR理论)。杂化轨道理论应用相对更为普遍。各理论的功用各有千秋,通过列表(表1),便于学生掌握。多原子共价分子ABn的极性与其键的极性和分子的空间构型(即形状)相关。如何教授学生准确快速把握共价型分子的空间构型,是教学的相对难点。为此笔者将相关知识联系起来梳理成表2,期望有事半功倍之效。表2中的等性杂化,笔者认为教材说的不够全面,应符合3个条件:(1)组成中心原子A杂化轨道的原子轨道的成分及能量均相同;(2)中心原子A无孤对电子对;(3)中心原子A与相同的端原子B或配位原子B形成)键。上述条件如果有一个不符合即为不等性杂化,如BeCl2、BCl3、PCl5、SCl6等是等性杂化,而PCl3、H2O、CH3Cl等是不等性杂化。杂化轨道理论在解释分子的空间构型时非常好用,应用广泛,尤其为后续的“有机化学”运用更多。为此,笔者有意识地对这部分内容与VSEPR理论进行对应比较教学(表3),便于学生消除这方面的难点。分子间作用力即范德华力的作用范围及产生原因是学生难以掌握的教学难点,为此笔者对此部分教学内容进行了梳理并总结列于表4,以利于学生的概念澄清,牢固掌握。从表4可知,色散力存在于一切分子之中,而取向力只存在于具有固有偶极的极性分子之间。化学键(原子间作用力)与分子间作用力(包括特殊形式的范德华力—氢键)的产生原因、产生对象、作用力大小以及力的特征等知识,有的学生也往往不易掌握,鉴于此,将它们进行了梳理比较分析,如表5,让学生一目了然,能快速准确地理解并掌握。需要指出的是,氢键的本性到底是什么,目前说法不一。有的说是静电引力,因为高电负性的F或O或N与H结合形成共价型分子HY,使得H几乎成为质子,此时的H呈现强电正性,易与另一个分子HY中的Y原子即F或O或N接近,产生静电吸引作用,结果形成氢键,表5暂时采用这一说法;有的说是共价键,因为它具有饱和性和方向性的特征,但键的数值太小,没有达到化学键范围,所以又不合理;有的以作用力大小为依据,认为氢键是特殊形式的分子间作用力,但让人不信服的是它又有饱和性与方向性的共价键特征。由化学键或分子间作用力形成的分子,其晶体往往不同,目前分为4类。为此将4种晶体的性质等知识进行综合比较得表6,目的是让学生便于厘清与掌握。
3其它章节部分
除了上述最重要的两章有较多的难点外,其它章节相对更为容易些。梳理一下主要有如下难点。
3.1化学热力学初步
状态函数的概念等知识是本章的重要内容,由于运用盖斯定律的函数必须是状态函数,所以学生要分清哪些是状态函数,哪些是非状态函数。状态函数主要有:P、V、U、H、S、G等,非状态函数有:W、Q等。注意教授学生状态函数的集合(和、差、积、商)也是状态函数[2],即+U、+H、+S和+G等也是状态函数。在U、+U、H、+H、S、+S、G、+G中,只有S有绝对值,U、H、G则没有。还要特别提醒S、+S与+H、+G单位的异同。要教会学生注意对大学化学中热力学的“标准状态”和中学化学中的“标准状况”这两个概念区分(见表7)。前者条件指的是:处于标准压力1.01×105Pa下的状态称为标准状态;后者要同时指明压力与温度即在标准压力101.325kPa和273.15K(即0℃)条件下为标准状况。关于为何规定白磷的标准摩尔生成热为0的原因,一些学生弄不明白,为此要进行特别讲解。标准摩尔生成热定义是[2]:“在标准压力1.01×105Pa和指定温度下,由最稳定的单质生成1mol该物质的等压热效应”。并规定在标准状态下最稳定单质的生成热为0,常用的是298K的数据。但是,红磷化学性质比白磷稳定,为什么规定白磷作标准摩尔生成热为0而不是用红磷(红磷的为负值)呢?其原因是[2]:(1)到目前为止,人们对白磷的结构研究相对更为成熟。研究表明,在固态、液态和673K以下的气态下,白磷均以P4分子形式存在,P4为正四面体,其键能、键角等参数业已确定;红磷的结构现在尚未弄清楚;(2)白磷的存在相对更为普遍。人们从磷酸盐中提取磷蒸气迅速导入水中冷却,结果总是得到白磷而不是其它同素异性体如红磷、黑磷等。白磷长期放置或在673K密闭加热数小时才转化成红磷;将白磷高压下或常压用汞作催化剂加热方能得到黑磷;(3)白磷的化学性质相对更为活泼。所涉及白磷的化学反应比红磷或黑磷多的多。综上所述,人为规定白磷的标准生成热为0并用以进行相关计算,则显得更方便、更实用。长期的教学经验及实践表明,讲述标准生成热定义时,将白磷作为特例作出说明,有利于学生理解最稳定单质及标准生成热等概念,学会处理矛盾的普遍性与特殊性的关系,更加理解知识是为人类生产生活服务的。
3.2溶液
溶液这章除了大纲要求掌握的基本知识外,要提示学生注意胶体溶液与高分子溶液的异同点,不然就会混淆不清,表8是为此所做的梳理、分析比较。
3.3电解质溶液
有的学生对四大酸碱理论概念及优缺点分不清楚,老师应该对此讲透(表9)。四大酸碱理论包括酸碱电离理论、酸碱质子理论、酸碱电子理论、软硬酸碱理论(严格上算不上理论,只是经验规则,它以酸碱电子理论为基础。教材将此理论安排在下册的配合物一章,为了知识的综合归类,利于学生对比掌握,故提前在此讲解)。其中软硬酸碱理论是学生最难掌握的。软硬酸碱[4-5]将酸、碱分为“硬”“软”两种。“硬”指具有较高电荷密度、较小半径的微粒(原子、离子、分子),它们具有较大的“电荷密度/粒子半径”的比值;“软”是具有较低电荷密度、较大半径的微粒,即具有较小“电荷密度/粒子半径”的比值。“硬”微粒的变形性(可极化性)较小,但极性较大;“软”粒子的变形性(可极化性)较大,但极性较小。为此软硬酸碱的概念如下(主要应用于配合物):硬酸:正电荷数、体积小、变形性小,即对外层电子抓得紧的中心原子。如:H+、Li+、Na+、Fe3+、Cr3+,等。软酸:正电荷数低、体积大、变形性大,即对外层电子抓得松的中心原子;如Hg2+、Ag+、Cu+、Cd2+,等。硬碱:电负性高、变形性小、难极化、难氧化,外层电子抓得紧、难失去的配位原子;如NH3、H2O、O2-、SO2-4,等。软碱:电负性低、变形性大、易极化、易氧化,外层电子抓得松、易失去的配位原子。如I-、S2-、CN-、CO、S2O2-3,等。位于软硬之间的酸、碱称为交界酸(如Fe2+、Sn2+、Zn2+、Co2+,等。)、交界碱(如N3-、Br-、NO-2、SO2-3,等)。硬酸和硬碱相互作用力主要是静电引力,软酸和软碱相互作用力则以共价键为主。该理论的酸碱结合的口诀是:软亲软,硬亲硬,软硬结合不稳定。
4结语
关键词:规范场论理论结构数学结构
正如江天骥先生总结的,“狭义的科学哲学(即一般科学方法论)主要研究以下三大问题:(1)经验科学理论的性质与结构,(2)经验科学理论的语义学,(3)理论之间的关系与理论变化。过去往往把科学理论简单地看作一个全称陈述(或几个全称陈述的合取),第一个问题便不需要加以专门研究……但是,要能够很好地解决理论评价问题也好,理论选择问题也好,都必须首先弄清楚什么是科学理论。以往归纳逻辑或科学方法论教科书所举的简单的科学理论的例子(例如:‘一切天鹅都是白的’或‘所有行星都按椭圆形轨道运动’)作为说明某一逻辑要点的例子是可以的,作为说明科学家如何评价,选择理论的例子,就完全失真。”[1](P1-2)可见,科学理论的结构问题是科学方法论中其它问题的基础,科学理论结构问题的研究一定要结合具体的科学理论进行。那么,作为最能体现本义上的自然科学的纯粹部分的规范场论[2],对科学理论的结构和性质问题一定有重要的科学方法论意义。
一、科学哲学中的科学理论结构观
在现代西方科学哲学中,随着相对论和量子力学的建立,特别是用分析哲学的方法,加上现代数理逻辑的工具,在经验论的基础上,先后发展了四种关于科学理论结构的主要观点:理论结构的“公认观点”、语义学的理论观、结构主义的理论观和科学理论的模型。
1、理论结构的“公认观点”
理论结构的“公认观点”(thereceivedview)是逻辑经验主义对科学理论结构的形式化构造,正如萨普介绍的“出于对物理学进展的回应,到二十世纪二十年代科学哲学界已熟知,把科学理论构造成公理运算就可通过对应规则给出部分可观察的解释,这种分析通常被称为关于理论的公认观点,(‘公认观点’这个名称最初由Putnam[1962]引入)。”[3](PⅤ)事实上,坎贝尔在1920年出版的《物理学原理》一书中,为了把所谓的科学理论同日常语言中对理论一词的各种用法区别开,他指出“一个科学理论就是命题的一个连通集(aconnectedsetofpropositions),它包括两组命题:一组由关于这个理论所持有的一类观念的陈述组成,即后来哲学家所谓的‘理论陈述’;另一组由关于这些观念和其它性质不同的观念之间关系的陈述组成,就是所谓‘对应定义’(赖兴巴赫)或“符合规则”(对应规则)(卡尔纳普)。”[1](P3)坎贝尔当时把前一组命题总称为假说,把后一组命题称为“词典”,并强调“类比”在理论应用时的重要性。坎贝尔对理论结构的看法,被卡尔纳普,赖欣巴哈,内格尔和享佩尔等逻辑经验主义者授受并发展成所谓理论结构的“公认观点”(或标准观点)。按照内格尔的区分,科学理论有三个主要部分:(1)一种抽象的演算,(2)一套规则,(3)对抽象演算的解释或模型。这套理论后来被享佩尔精致化为内在原理、桥接原理和导出原理三部分,并由于科学理论只是被部分地解释,而称之为科学理论的部分解释观。
这种“公认观点”最大的问题是,把科学理论中的名词严格地分为“理论名词”和“观察名词”不能截然分开,并且“因为它对观察和理论区别的依赖使得它模糊了科学理论结构的一些认识论上重要并且具有启示性的特征。”[1](P108)另外,公认观点“困难的一个来源是这个可疑的假设:科学理论在其对象语言中含有一类语法对象(符合规则),它们具有特殊的语义学的和方法论的功能(给予理论名词的解释)。”[1](P5)还有就是,“存在由汉森、库恩、费伊阿本德和其它马上起来反对‘公认观点’的人所提出的科学哲学理论替代品,以及为其它理论观和科学知识观所作的争辩。”[3](P4)而使这种观点一蹶不振。
2、语义学的理论观和结构主义理论观
语义学的理论观和结构主义理论观都可统称为语义学的理论观(thesemanticconceptionoftheories),相比之下,“公认观点”由于主要集中于理论的语法分析,又称为语法学(语形学或句法学)的理论观。贝斯、范•弗拉森和萨普的语义学理论观(这是他们对自己观点的称谓)和苏佩斯,史尼德,施太格缪勒的结构主义(这也是他们对自己观点的称谓)都有一个共同的中心思想:“理论并不是演绎地相连通的语句或命题的集合,而是由数学结构(‘理论结构’)组成的,这些结构作为同实在的或物理地可能的现象处于某种表象关系而被提出来。”[1](P6)
在对“公认观点”的批判过程中,语义学理论观和结构主义理论观逐渐明确“理论并不是命题或陈述集,而是可被大量不同语言形式描述或刻画的超语言实体。”[3](P77)范•弗拉森把理论结构看作构形相空间(confabulatedstatespace),认为理论结构的语义学理论观中,重点应讨论诸模型及它们的逻辑空间,以及理论结构与世界关系。[1](P173-P187)也就是说,理论结构与经验结构之间的关系是同构关系,这是通过把理论看作一簇模型,模型又是与世界结构同构而达到的。正如萨普后来总结的,“语义学观点把理论等同于某种抽象的理论结构(比如构形相空间),这种理论结构是建立在与现象的映射关系之中,理论结构和现象的关系是理论的语言形式系统的所指。其基本思想就是理论结构与合适地连通的模型簇等同。”[4](PP:S105)
受布尔巴基数学结构主义思想的启迪,在亚当斯(E.Adams)尤其是苏佩斯(P.suppes)的二十世纪五十年代集合论公理化思想的影响下,史尼德在1971年出版的《数学物理学的逻辑结构》标志着结构主义理论观的建立,后来施太格缪勒和巴泽尔(Bazler,W)等人作了很大的修改和应用,并与库恩合作用以解释科学理论之间的发展问题。这种观点试图用集合论谓词作为公理化的形式,将科学理论中多种函项,各种关系用谓词表达出来,先展示出理论的内在数学结构,由核心(core)K和期望应用(intendedapplication)I所组成的对偶(K•I)理论元素(theoryelement),在此基础上形成理论网络(theory-nets),理论网络又连成理论整体(theory-holon)[5](P13)。结构主义理论观和范•弗拉森、萨普的语义学理论观一样,认为理论并不等同于提出理论时的命题集,而是语言外的理论结构,不过结构主义认为理论结构是可以用一个集合论谓词来加以公理化的集合论对象,也就是说,结构主义所使用“模型”是一个集合论的谓词。
3、科学理论的模型
从逻辑经验主义到语义学的理论观和结构主义的理论观,都涉及到“模型”,但它们中的“模型”互相不同,与“科学理论的模型”也有差异。在逻辑经验主义中,也常为了直观起见,建立一个已被完全解释了的体系(也可称为模型),用来说明通过对应规则而被完全解释了的形式体系,它与部分解释了的形式体系的区别在于认识论结构方面,前者是逻辑上居先的命题决定出现在它下面的层次中的术语(或命题)的意义,也正因如此而有解释作用。而语义学的理论观和结构主义的理论观中的“模型”主要是指理论的一种逻辑演算的形式,正如“范•弗拉森认为的,‘模型’一词的用法是从逻辑与元数学中派生出来的,模型一词指的是‘模型类型’”。[6](P91)事实上,逻辑经验主义时代之前的模型一直处于被漠视的地位,直到语义学理论观那里,模型才开始得到应有的重视。R.B.Braithwaite在《经验科学中的模型》开始认为模型具有与理论不同的认识论结构,而语义学理论观和结构主义理论观中的“模型”也得到重视,几乎达到与理论同等地位看待。到语义学理论观阶段,已有“理论是模型集”的口号[4](PPS111)。但是总体上来说,模型在科学哲学仍然被看作“是逻辑经验主义者的传统”[7](P34)。
近年来,在科学哲学中研究科学模型是为了“评定科学事业中模型的实际作用、功能。”[7](P34)当然,人们是逐渐认识到模型在具体科学中的作用的,“功能不同的模型都能发挥出一个突出作用就是:解释(例如,Harre,1960;Hesse,1966;Achinstein,,1968),理论模型的解释优势经常与类比的应用相联系。”[7](P348)最后,人们认识到适合描述科学理论的模型,所具有的说明能力和创造,这基本上体现在常说的“建模”活动中。而对模型的科学哲学研究,也进入到“从模型在科学中的作用到它们在人类认知中的作用”的阶段,也促使对科学模型的研究转向为自然化认识论的一部分。
二、规范场论的科学方法论意义
1、对现有科学理论观的分析
从上节对已有科学理论观的介绍,我们就知道各种已有科学理论观是有其优点和缺点的。从理论结构的“公认观点”到语义学的理论观和结构主义理论观,由于“公认观点”强调科学理论是由命题(或陈述)集组成,对科学理论的分析也就是利用现代逻辑对其中的科学语言进行句法学(语形学)的分析,其中虽有语义方面的分析,但只表现为一种经验语义学。相反,不论是语义学的理论观还是结构主义的理论观,都否认理论是命题的集合,而认为理论是由数学结构组成的,考察科学理论的结构重点是看这些数学结构与现象之间的一种语义关系。而科学理论的模型,则从语义学理论观中逐渐对模型的重视,试图转变为直接研究科学模型,尤其是突出科学模型的自然化认识论作用。可见,科学理论结构观的这种发展趋势,从语言哲学的角度看,只是一种从语形学到语义学和语用学转向的趋势(因为自然化认识论更多的要涉及到研究者。)
另外一个重要的角度,从数学的观点看,“公认观点”强调科学理论是由命题集组成,而语义学的理论观和结构主义的理论观则强调科学理论是由数学结构组成,科学理论的模型最终是强调数学建模,也试图直接以数学为其研究的主要内容。可见,这里有一种趋势,就是认为科学理论由命题集组成向科学理论是由数学结构组成转向的趋势。这种转向到底正确与否,值得我们反思。虽然,萨普后来回忆道:“公认观点是逻辑实证主义的知识论的核心,在有一千二百多人作为听众的那个夜晚它死亡了,那是1969年3月26日——一个关于科学理论的结构的Illinois会议的第一天晚上……C.享佩尔这位‘公认观点’的主要发展人,作为会议开始发言人,人们指望他提出公认观点的最新方案,相反他却告诉我们他为什么放弃公认观点及其赖以存在的句法学公理化方法(Hempel1974),突然我们意识到战斗胜利了,而会议变成我们现在应向何方的热烈探讨。”[4](PP.S102)这是萨普在1998年的两年一度的科学哲学联合会上的回忆,并指出“公认观点”为什么失败的主要原因的头两条是“理论不是语言实体因此是不适合个体化的”和“对应规则带来的混乱”。但是,三十年后,语义学和模型的命运又如何呢?1998年的会议上,NewtondaCosta和StevenFrench总结道,“8年后,在《科学理论的结构》(1969年Illinois会议的总结性论文集)一书出版时的后记中,萨普声称‘语义学的理论观……是作为取代分析科学理论的‘公认观点’的唯一竞争者’(1977,709)。20年后,他坚持认为‘今天语义学的理论观可能是科学哲学家们广泛持有的关于理论性质的哲学分析’(Suppe1989,3)。30年后我们在哪里呢?大量的工作是关于科学模型的性质、它们的应用及其与理论之间的关系问题。”[8](PP.S119)并在最后总结道:“或许在科学哲学中我们所面临的最基本问题是科学实践的表征。”[8](PP.S125)这种回顾表明科学哲学家们对科学理论结构问题的探讨还是以理论和模型的关系为重点,并更看重科学实践。
因此,我们认为“公认观点”和后来的理论结构观都有偏颇。公认观点虽然由于把理论视为语言实体,进而分成理论语言和经验语言两个层次,又不得不用容易引起混乱的对应规则连接起来,其最大优点是使用了大家所熟知的以命题为要素的公理化体系,符合人们对理论结构的处理习惯,比如发现理论与观察不一致时,可适当调整某些命题;其最大缺点却是如此划分的结构有许多内在不一致性,并且不利于整体把握理论与理象之间的适宜性,而语义学的理论观和结构主义理论观,虽然克服了公认观点的缺点,但是它对句法学的排斥也就不利于直接指导科学理论中命题的修改,也不如“公认观点”中句法学和经验语义学那么精细;其优点就是对理论的整体把握,以及对其中的数学结构的凸显有利于整体评判,其中对模型的强调也弥补了理论与现象分裂的一些缺点。而科学理论的模型只是一种试图直接以科学模型为研究对象的努力。
2、规范场论的科学方法论意义
规范场论最完备的数学基础应该是纤维丛理论,纤维丛理论是相对完备的一套数学体系,要想越过纤维丛理论,而直接对像规范场论(包括量子场论)这样的物理理论进行句法学的分析,特别是找出明确的对应规则与具体的经验名词逐条对应就会出现前述公认观点的困难。实际上对于量子场论的解释分歧也很大,比如P.Teller(1990)的谐振子解释,试图用量子化的谐振子描述量子场论,认为量子场形式地等效于谐振子的无穷集,从而我们就能想象按形式上等效于振子的量子化方法对场进行的量子化,正如他所说的“我们比量子场更好地理解量子化振子”。而另一种关于量子场论的解释是玻姆(1987)的因果性解释,这种解释认为量子场有跟经典对应物同样的本体论,虽然其动力学完全不同,那么我们能理解经典场到什么程度我们就能理解量子场到什么程度。然而,NickHuggett和RobertWeingard认为,量子场论只能在某些范围内可用谐振子的方式解释,谐振子的方式至少在某些方面是误导,相反可能有些解释会比Teller的更好,而玻姆的解释也有诸如不满足洛仑兹变换等问题。[9](PP.370-388)事实上,能从规范场论中直接推演出一些能用实验测定的参数就很不容易,比如标准模型中三代物质粒子的质量,必须通过引入所谓的汤川耦合项,使其成为标准模型中待定的参数,可见,要找到“公认观点”中的观察名词几乎是不可能的。
相比之下,由于语义学的理论观和结构主义的理论观的确避免了对应规则和观察语与理论语言区分的麻烦,强调具体的有个性化的理论分析,使其更有活力。比如范•弗拉森的量子力学模态解释,结构主义对经典物理和相对论的解释都是很好的例子。但是,如果把它们用到规范场论上,虽然理论结构会更清晰,但是也会有其麻烦,比如用语义学的理论观分析规范场论,一定要寻找规范场论的超语言的结构,不论是抓住其中的对称性引起的群结构,还是几何属性引起的纤维丛理论这种数学结构,仍然面临当这些数学理想化条件满足时,它们与现象如何联系起来之类的问题。不论是萨普用实验检验的办法以达到一种准实在论的终点,还是范•弗拉森强调每个真实系统只是理论描述的状态空间中的一种可能情况以强调其模态解释观,或者结构主义强调理论元素形式的网络结构以便阐明科学理论的动力学变化,都会因为仍然固守经验主义的教条,最终避免不了形式主义的特征,也就是用各自的科学哲学框架去套某一科学理论是如何与现象结合的,却达不到预期目标。这正印证了DavidPearce和Veikk.Rantala所作的评论,“首先,完全抛开句法来描述理论T等于把语言的有意义方面连同无意义方面一起抛弃了。没有语法和语汇,对理论T的逻辑分析或证明论分析就几乎是不可能的。其次,不难看到,使用语言学和语义学概念所能作出的区分比集合论描述所能作出的更为精细。”[1](P329)
可见,无论是从语言哲学的层面看,关于科学理论结构的语形学(句法学)、语义学到语用学考察的转向,还是从分析工具的角度看,认为科学理论由命题集组成到科学理论是由数学结构组成的转向,都强调科学实践的作用,前者通过强调语用学维度而强调对科学理论的整体性把握,后者通过强调科学理论中的数学结构而强调了科学工作者的实际工作中对数学工具的依重。其实,在一般哲学层面上,阿佩尔在论述科学主义和先验解释学的关系时就指出:“在分析哲学的发展进程中,科学哲学的兴趣重点逐渐从句子法学转移到语义学,进而转移到语用学,这已经不是什么秘密。”[10](P108)。而在具体方法上,如果说P.苏佩斯的著名口号“科学哲学的正确工具是数学,不是元数学(Metamathematics)”[1](P178)中的“数学”,还不是科学理论中的数学,而是指使用数学研究科学理论而不是使用逻辑方法的话。那么,我们认为对科学理论结构的分析也应跳出语言和经验论的范围,重新思考。
在一般哲学层面上,退一步回到科学知识的先验基础,比如在康德认为本义上的自然科学包括先天综合判断,其中的先天性即普遍必然性是可以通过数学表现出来的,康德甚至强调本义上的自然科学的纯粹部分中有“形而上学和数学的构想在其中交互影响”,那么对于最好地体现了本义上的自然科学的纯粹部分的一些物理学基础理论,从牛顿力学,麦克斯韦电磁理论、相对论、量子力学到量子场论、规范场论等,其中的科学理论的结构和性质先天地和所使用的数学联系在一起。
在具体方法上,就要进一步进入到科学理论的数学基础,所以在科学理论结构的分析中,我们始终要抓住其中使用的数学,这是是完全有必要而且可行的。在科学方法论中,对科学理论结构的分析最好是直接分析其中的数学及其与经验之间的关系。当然,这种分析在一般自然科学本身内部就是如此进行的,表面看来对于科学哲学来说是无意义,因为这是科学工作本身,而不是哲学研究。但是,站在现代数学的高度综合这一特征的角度看,规范场论是完全可以用纤维丛理论形式体系化的,纤维丛理论本身就是对规范场论的最好公理化体系,或者说最好的理论结构,最好的数学模型。只要我们比苏佩斯用数学分析科学理论更进一步,我们就要直接分析科学理论中的数学。而相比之下,如果说已有的科学理论观有其存在的必要的话,是因为它们能规范地研究各种不同的科学理论,找出不同科学理论的共同结构,从而好进一步研究这些科学理论的解释,不同理论的比较,相互关系以及评价等问题,但这些工作用在一般科学理论上或者对这些科学理论进行泛泛的研究是可以的,而面对象物理学中的规范场论这种基础理论进行深入分析显然不够,也没有必要。
事实上,把纤维丛术语和规范场术语对应起来之后,人们发现可以从流形的观点看几乎所有的理论物理学的各个分支,甚至各种时空观、物质结构观和自然界中的四种相互作用都可以从流形的观点给出一种统一的说明。而从牛顿力学、麦克斯韦电磁理论、相对论、量子力学到规范场论等各种理论之间的关系完全可以在同一个框架下比较,包括对同一种理论的不同理论提法也可比较研究。当然这种观点是从规范场论开始才明显的,所以我们称它为规范场论的科学方法论意义的表现。
参考文献:
[1]江天骥主编,卡尔纳普等著,科学哲学和科学方法论[M],华夏出版社,1990年。
[2]李继堂、桂起权,从康德的科学哲学到规范场论——关于本义上的自然科学的纯粹部分[J],自然辩证法研究,2004,(6)。
[3]FrederickSuppe,TheStructureofScientificTheories,secondedition,1977,Pv。
[4]FrederickSuppe,UnderstandingScientificTheories:AnAssessmentofDevelopments1969-1998,.PhilosophyofScience,67(Proceedings).
[5]WolfgangBalzerandC.UlisesMoulines,StructuralistTheoryofScience:FocalIssues,NewResults,WalterdeGruyter,1996.
[6]郑祥福,范•弗拉森与后现代科学哲学[M],中国社会科学出版社,1998年。
[7]DanielaM.Bailer-Jones,追踪科学哲学中模型的发展,科学发现中的模型代推理[M],中国科学技术出版社,2001年。
[8]NewtondaCosta,StevenFrench,Models,Theories,andStructures:ThirtyYearson,PhilosophyofScience,67(Proceedings).
不同于物理学的其它部分,热学包括宏观理论与微观理论两种理论。热现象的宏观理论热力学,通过大量的观察和实验总结出三条基本定律,给出了热运动与其它运动形态相互转化的基本规律。热力学具有严密的逻辑体系,其前提简单,应用范围却很广,被爱因斯坦称为是具有普遍内容的唯一的物理理论”。热运动的微观理论(在大学物理中是气体动理论)则是从体系的微观模型出发,应用统计方法计算体系的宏观量(压强和内能等)。统计理论的结果可以使我们深刻理解那些抽象的热力学概念的本质,它与热力学相辅相成,构成了有关热运动的完整理论。从研究方法看,热力学基本定律用否定语气表出,热力学第二定律数学表达式用反证法导出,都给我们提供了不同于物理学其它部分的思维论证方法,有利于培养学生运用逻辑推理进行抽象思维的能力。热学的从微观到宏观的统计方法,在物理学中更是独树一帜,它完全不同于力学、电磁学乃至热力学的实验———理论———实验的传统方法,是一种假设———理论———实验的方法,这种方法是现代物理学最重要的方法之一。然而,在大学物理热学部分这两种理论的表述都没有系统化。有的教材中在给出热力学第二定律的定性表述之后,导出了卡诺定理,并未进一步导出其数学表达式,而是由熵的玻尔兹曼关系给出了熵增加原理。这种讲法没有体现热力学理论本身的完整性。气体动理论的系统理论较为复杂,大学物理中的气体动理论只是初步理论,其中,作为中心内容的气体分子速率分布律(麦克斯韦速率分布律)一般教材都不讲导出过程,而玻尔兹曼分布律仅仅是由麦克斯韦速率分布律推广而来,缺乏系统性,给人以支离破碎的感觉。因此,热学部分的教学内容需要很好地组织、整合。
二、整合部分教学内容
笔者认为,在热力学部分,热力学第二定律的数学表达式及其导出过程,集中体现了热力学理论的完整性以及其特有的逻辑思维方法,是不应或缺的。在导出卡诺定理之后,接着导出克劳修斯表达式,再定义熵函数,得到热力学第二定律的数学表达式(熵表达式)和熵增加原理,篇幅不长,难度不大,可以纳入必讲的教学内容。如果教学时数确实有限,至少作为选学内容可以写入教材笔者认为,在不增加难度的情况下,可以较大幅度地整合气体动理论内容,以增加其逻辑性和系统性,有利于展示统计方法。建议将气体动理论部分的内容按以下方式整合:1)麦克斯韦速率分布律。分析气体分子热运动特征———提出理想气体的微观模型———定义速率分布函数———导出用速率分布函数表达的理想气体的压强公式———用简单方法导出平衡态速率分布函数的形式———代入理想气体的压强公式确定参量———麦克斯韦速率分布律———三种特征速率。2)理想气体的物态方程和热容量。用麦克斯韦速率分布律计算压强———气体动理论的物态方程———用麦克斯韦速率分布律计算单原子分子理想气体的平均动能———温度的微观意义———推广得到能量均分定理———理想气体的内能和热容量。3)熵的玻尔兹曼关系热力学第二定律的微观意义。4)气体分子的平均自由程和迁移过程。
三、明确教学目标和要求
笔者查阅了教学时数在108~126学时的数份大学物理教学大纲,发现热学部分除了内能、热力学第一定律及其对理想气体的应用这部分要求掌握”外,对其他部分各大纲的要求多有不同。在热力学部分,对可逆过程与不可逆过程、热力学第二定律的表述及其统计意义,一般要求是理解”,但也有要求掌握”和了解”的;多数大纲对有关熵和热力学第二定律的熵表达式没有提出要求,只有一份大纲提出了理解”的要求。在气体动理论部分,几份大纲中多数仅要求理解”压强和温度的微观本质和能量均分定理,对理想气体分子热运动图像和统计方法以及麦克斯韦速率分布律等的要求都是了解”,也有一份大纲对上述几部分内容都要求掌握”。几份大纲的对热学部分的教学要求分歧很大,表明这个问题确有讨论的必要。我们认为,热力学第二定律的数学表达式的导出过程,集中体现了热力学特有的逻辑思维方法,从注重学习物理学方法的角度看,是不应或缺的。从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的统计思想和方法,应当是气体动理论部分的重点内容。麦克斯韦速率分布律是气体分子热运动的重要统计规律,即使是通过不严格的粗浅的方式导出,也是有利于学生接受和理解这一规律的。能量均分定理对讨论理想气体热容量是有用的,但它并非气体动理论的基本定理,不宜过分强调。据此,我们提出以下教学目标:1)理解准静态过程、内能和热量的概念,理解热力学第一定律的物理意义及其普遍性。2)掌握理想气体各种等值过程和绝热过程中的功、热量、内能改变量及卡诺循环的效率的计算。3)理解热力学第二定律定性表述的实质,理解可逆过程和不可逆过程。通过由热力学第二定律定性表述导出卡诺定理和克劳修斯不等式,理解热力学理论的逻辑思维方法。4)了解熵的宏观意义和熵增加原理。5)理解气体分子热运动的基本特征。理解速率分布函数的统计意义。通过推导气体压强公式,理解从提出模型、进行统计平均到建立宏观量与微观量的联系的统计思想和方法。6)理解麦克斯韦速率分布律及其三种特征速率。7)通过麦克斯韦速率分布律计算气体的物态方程和热容量,理解统计方法的系统性,理解压强、温度、内能等概念的微观本质。8)通过熵的玻耳兹曼关系了解热力学第二定律的统计意义。9)了解气体分子平均自由程的概念和对迁移过程的应用。应当指出,在实际教学中教师不看大纲仅按教材教学的现象较为普遍。在这种情况下,教师对教学目标和要求不明确,教学内容的处理就把握不准,教学效果就难以提高。
四、讲究教学方法
教学目标确定以后,接下来的问题就是如何实现这些目标。在力学部分,从基本的实验定律牛顿定律出发,每导出一个定理,教师讲例题,学生做作业。如果说这种教学方法在讲解热力学第一定律及其对理想气体的应用时,效果还可以的话,在讲解热力学第二定律和气体动理论时就很难有好的效果了。热力学第二定律和气体动理论部分几乎没有什么应用的内容,但要求注意推理过程,理解其中的思想和方法,而学生已有的习惯并不重视这一点。因此,需要采用更有吸引力和启发性的教学方法。笔者在教学过程中体会到,比较长篇大论的讲解,将教学内容分解为一个个问题的讲解方法更能吸引学生的注意力,激发学生的学习兴趣。用这种方法,问题必须精心设计,提出问题要学生思考,但不一定要学生回答。以讲解热力学第二定律为例,可设置如下问题:1)满足热力学第一定律(能量守恒)的热力学过程都能实现吗?热现象是否还有其它规律?2)比如说,有没有可能制造一个效率为100%(仅从一个热源吸热做功,不放热)的热机呢?(给出热力学第二定律开尔文表述后)是否可以说,开尔文表述就是热不能完全变成功”?3)再比如说,热量可能不可能由低温物体自发传到高温物体呢?(给出热力学第二定律克劳修斯表述后)是否可以说,克劳修斯表述就是热量不能从低温物体传到高温物体”?4)两种表述似乎并不相关,为什么都是同一规律———热力学第二定律吗的表述呢?5)我们知道,功可以全部自发转变为热,而开尔文表述说热不能全部自发转变为功。这反映出一个什么问题?同样,热量可以从高温物体自动传到低温物体,而克劳修斯表述说热量不可能由低温物体自动传到高温物体。这又反映出一个什么问题?6)可逆过程与不可逆过程的本质有什么不同?用可逆过程和不可逆过程的语言,你能将热力学第二定律的两种表述分别说成什么?7)两种表述等价性的证明过程也表明不可逆过程是相互关联的,由此看来,热力学第二定律实质上说明了什么?热力学第二定律还能不能用其它方式表述?8)热力学第二定律能不能有一个数学表达式?如果能,它会是一个什么样的式子?等式还是不等式?如果时间允许,也可用这些问题进行课堂讨论,相信效果会更好。
五、改进练习和考核
为了达到教学要求,除了讲究教学方法外,还需要改进练习与考核的内容和方式。热力学第二定律和气体动理论部分几乎没有什么应用的内容,有价值的习题较少,应当特别注意思考题的应用。可以利用思考题组织课堂讨论,也可以将有些思考题作为习题布置下去。比如针对热力学第二定律,下面几个题目作为习题可以很好地配合教学内容:1)热力学第二定律的普朗克表述是:不可能制造出一个机器,它在循环过程中从单一热源吸热全部用于将一重物提高。证明普朗克表述与开尔文表述等价。2)证明,功变热的不可逆性与理想气体自由膨胀的不可逆性是相互关联的。3)证明,对于任何物质,一条等温线与一条绝热线不能有两个交点。4)证明,对于任何物质,证明两绝热线不能相交。5)用熵增加原理证明理想气体的自由膨胀过程是不可逆过程。从某种意义上说,期末考试也是学习平时学习的指挥棒。除了习题之外,平时强调的思考、讨论的问题,也要在期末考试中体现出来。以填空题、选择题和问答题等多种形式,考察学生对热学基本概念、基本定律和科学方法的理解和掌握程度。
六、结束语
一、易学自然观
《周易》包括《易经》和《易传》两部分,实际上是上古巫文化化出的符号、周初时期占筮验词集锦和战国末年理性诠释的统合。作为《易传》的十篇释文已经完全脱离卜筮,建立起一套以阴阳为纲阐释变化的理论体系。汉兴,《周易》作为官学传习和研究的对象,被尊称为“五经”之首;汉易已经纳入阴阳五行学说,隋唐时期易学即以其理性向科学领域渗透;进而逐渐形成以符号系统与以阴阳为纲纪相结合的范畴体系和理论结构。
易学对宇宙的基本观点是:阴阳相涵相因、流变会通,构成一个合谐互补的有机整体。
张立文教授在《王船山易学思想略论》〔1-191〕中指出:船山的本体哲学,统体会通于和合。所谓和合者,就是“阴阳未分,二气合一,氤氲太和之真体”。《易传》有言“形而上者谓之道,形而下者谓之器”,作者认定道器是虚实范畴,虚与实的主要差异在于隐与显。“形而上者是隐也”,隐不是无,而是潜在,是形而下所以存在的根据。“形而下者是显也”,指有形质的东西,“即形之成乎物而可见可循者也”。即此可知,显指可见可循的事物和现象,隐指寓于“器”而起作用的现象背后更本质的东西;而隐又不是虚无,“道不虚生,则凡道皆实也”。从而推定道乃实存之体,得出道器交与为体、相涵相因、流变会通的两系统结构论。
道和器的关系究竟如何?就逻辑上讲,“形上者乃形之所自生”,因为凡器皆有形,由“形”逻辑上得出对应于“形下”必然存在着“形上”。就二者的主从关系讲,“当其未形而隐然有不可喻之天则,天以之化”,依此概括二者的关系为:道是器存在的依据;道通过器而表现自己,一切显性的运动变化之因皆源之于道。再就孰先孰后的角度讲,是“理不先而气不后”,二者既不存在先后、本末之别,也就从根本上排除了天理、神创的观念。
张教授立足于人文(兼及自然)阐述问题,认为“王船山道器、气关系,充分体现和贯彻了《周易》和合人文的精神”,本文专门讨论自然而不涉及人文。依据形上学本体哲学,自然界的物理客体应该分两类,即“形之已成乎物”和“未形”,二者的本质区别在于形下之“显”和形上之“隐”。
小结:易学自然观是两系统结构论。从静态角度讲,“万物(包括宇宙自身)负阴而抱阳,冲气以为和”;从动态角度讲,“阴变阳,阳变阴,其变无穷”。所谓的易,就是讲阴阳变化之理的学问,即“易以道阴阳”。
二、两种物理学理论
物理学作为一门学术的名称,是从亚里士多德的希腊文著作延续下来的,这个希腊词的意思是探讨自然的秩序和原理的“自然学”,亚氏又称其为自然哲学。大约到18世纪中叶,由于学科内容的分化,自然史和化学从物理学中独立出来,18世纪后半叶法国讨论过留下的物理学意味着什么,结果是把物理学分为一般物理学和特殊物理学。前者指牛顿力学或由《自然哲学的数学原理》导出的以数学描述质点运动的传统,后者包括声、光、电、磁等广泛领域。通常都把这种划分说成是数学科学传统和实验物理学的分离。
1829年,泊松把当时法国物理学的思想倾向归为两类:物理力学和解析力学。他把前者的特征描述为“它的唯一的原理是把一切还原为分子运动,而这些分子是把力的效果从一点传到另一点并保持这些力之平衡作用的核心”,即期望用天体运动的牛顿平方反比定律数学格式,精密地描述宇宙一切现象,称牛顿范式;而后者则强调现象的解析格式,轻视对物理原因进行讨论,称非牛顿范式。1840年以后,牛顿范式的地位被非牛顿范式所取代;与之同时,拉格朗日原理被泊松和哈密顿予以发展,使力学成为完全分析的形式,并且以能量取代力的概念体系。本应该由之意识到“根本不存在纯粹的力学现象,实际上运动总是结合着热和电磁的变化,它们也规定运动”〔2-9〕,从而结束牛顿的“力学神话”,可惜的是西方哲学没有能够为物理学提供合适的自然观,以后的物理学就在迷茫中走了许多弯路。对两种范式的本质差异,一般都视为用几何法还是用解析法的数学问题。
19世纪30年代之后,随着实验物理学的成熟,出现了实验物理学和理论物理学之区分;物理学的理论又分原理理论和构造理论两类。前者是先使用分析法在经验中发现自然过程的普遍特征(即原理),然后给出各种过程必须满足的数学形式的判据,比如牛顿力学;后者又叫“假说—演绎”法,即先确立“想象的原理”(即“假说”),然后采用反证法通过由原理导出的结论对原理进行证明,给出的内容与经验所显示的现象吻合得愈多愈一致,特别是能够从假说来预言现象并得到证实,这种构造理论就愈成功。依据这种分类方法,一般都承认17世纪牛顿的《原理》和惠更斯的《论光》就分别代表了原理理论和构造理论。对这两种理论划分的依据主要在于思维方式,即前者采用分析法而后者采用综合法。
三、两类物理客体
牛顿的《原理》和惠更斯的《论光》,从近代物理学奠基开始,两种截然不同的理论分别传承为两种体系,即牛顿范式——原理理论,惠更斯范式——构造理论,其本质差异不在思维方式和数学形式之不同,也不在是采用数学方法还是实验方法之别,而在于研究的客体分属于根本不同的两类。
以质量对物体进行计量,并假定质量都集中在一个质点,以相互传递力的作用描述运动,是牛顿范式的核心观念;非牛顿范式研究的光、热、电、磁等现象,都不能以质量进行计量,最终认识到了这种现象都与“能量”直接相关,并且以能量取代了力学概念体系。
而今首当其冲应该明确的是物理学根本就不直觉研究“物质”,正象无法品尝水果一样,因为二者都是抽象的类概念。物理学只研究质量、能量、电量、时间和空间之间的关系,两种理论的适用范围不同,前者是关于质量系统的理论,后者则适用于能量系统。以往不适当地把能量说成是物质运动的形式(如“能即运动”)〔3-526〕,是产生混乱的肇端。现代物理学已经确认物理客体分两类:宇观上有分立的天球和连续辐射,微观上分粒子和场,粒子物理学分费米子和玻色子,理论物理学称其为物质粒子和相互作用;物理学理论也分用质量计量和时空描述、用能量计量和位形描述两个系统。“我们首先把宇宙的物质内容分成两个部分:“物质”即诸如夸克、电子和缪介子等粒子,以及“相互作用”诸如引力和电磁力等等”〔4-38〕。当代著名物理学家霍金居然会说出如此不合逻辑的荒唐话,不难看出“物质”这个误用概念带来的混乱是何等严重。
物理客体不能用“物质”这个概念进行抽象和概括,而应该分为质量和能量两个系统,二者的本质差异有3:1、分立和连续;2、有无静质量;3、量传递时物理客体仅只振动而不发生运动方向的位移。确认能量系统存在的依据有5:1、德西特从广义相对论场方程得出没有物质的宇宙时空解;2、无限的(负能电子)海的发现;3、爱因斯坦说:“依据广义相对论没有以太的空间是不可思议的”;4、3K微波背景辐射证明“空间”不空;5、粒子物理学的实验发现,绝大多数粒子为瞬息亿变的动态网络。
“全〖ZZ(〗空间〖ZZ)〗充满着相互作用着的各种不同的场”〔2-387〕,这种分布着某种物理量的空间,不同于经典物理学中作为参量的空间。“场从数学上表述了能量局域性概念”,“是一个具有无穷多自由度的动力系统”〔2-353〕。即此可知,一切自然现象虽表现为质量系统单元个体的运动和变化,动变之因却源于能量系统的作用;而能量系统本身不通过作用于质量系统的效应也根本就无法观测。物理学早已将物理客体分为弥散态粒子和凝聚态物体,3K微波辐射发现之后,就应该从分类学的角度再增添一种连续态网络;进而将弥散态粒子分为质量子和能量子,如此一来,物理世界图象就会变得非常清晰。
物理客体分物体、粒子、网络三类,分别用质量、电量(或荷质比)、能量计量;人类生活的现实世界属于质量系统(从天球到原子乃至质子、电子),能量系统则是一切运动变化的动力之源;所有的共振态、复合态粒子均属于能量系统的动态网络,只有那些稳定的能量子才有现实意义;不同能量子的有序组合构成信息(从质量系统讲,传递信息必须有载体,而对能量系统,信息和载体则合而为一,于此无暇展开讨论),可以用于操作质量系统的变化和存储一切自然现象。
小结:物理客体分两个系统三种态。质量系统和能量系统确实属于“负阴而抱阳,冲气以为和”的状态;作为两系统“中介”的弥散态,是演绎世间万象的“大舞台”;何以产生质量和电量,是现实世界存在的最根本机制。
四、时间和空间
无论哲学还是物理学,时间和空间都是一对非常重要的范畴,同时又是亘古至今争论最多直到今天还没有取得共识的两个概念。16世纪之前,基本上没有留下多少值得关注的重要论点;牛顿为了创立完整的力学体系,不得不提出人类历史上第一个时空构架。他认为物质是在绝对空间中运动,时间不跟任何物质对象相关、自身等速地在那里流;时间和空间各自独立互不相关。亦即是说时间和空间仅只是描述运动的参量。
现代物理学的发现则是:“广义相对论用空时结构的几何性质来表示引力场”〔2-328〕,场不但“是某种物理量的空间分布”,还是“一个具有无穷多自由度的动力系统”〔2-353〕。很显然,时空结构应该被理解为改变物体或带电粒子运动状态的作用量。
依据质能两系统结构论看待,即使在牛顿力学体系中,时空结构也是作用量而不是描述运动的参量。比如牛顿力学的第一号自然力——重力G=mg,如果没有g作用于m,物体就不会自由下落,很显然g是使m自由下落的作用量。如果用电磁作用相类比,g可以被称为引力场强,其作用效应跟电场作用于电量没什么两样。自从发现了动量和能量守恒之后,牛顿力学方程基本上已经不再使用,足以说明牛顿力学非常片面,能够沟通三个领域最基本的物理量只有动量和动能,根本就不需要力这个概念。
时间和空间究竟指什么?答曰:二者分别是对能量系统单元个体持续性和广延性的计量,恰如用质量计量物体、用电量计量带电粒子那样。
“空间一时间未必是一种可以认为离开物理实在的实际客体而独立存在的东西。物理客体不是在空间之中,而是这些客体有着空间的广延性”〔5-112〕。爱因斯坦如果对中国古典哲学稍有理解,就会再说一句:这些客体还有着时间的持续性。这种“物理实在的实际客体”即指能量系统而言。
能量系统虽是连续态,探究其具体作用时却需要量子化。假定其最小单元为h,由ε=hν=h/T可知,只要测出周期T,即可以知道具体的能量值,同理测出波长即可知动量。故而可以说时间和空间是对能量系统两种属性的计量。
董光璧教授猜想对于不同的相互作用,应该“各有其时空结构”,是有道理的。用于电动力学的时空结构已经非常成功,“对于电磁相互作用,相对论提供的时空结构和量子论提供的能量结构,既在逻辑上自洽又与经验相符”〔2-429〕;而对于质量,发挥作用的时空结构有ι2t-2和ιt-1两种,对行星的运行则有R3/T2=K。
小结:时空不是独立的存在,而是用于计量能量系统属性的概念构架。对于物体或带电粒子,不同的时空结构作用于质量和电量可得能量和动量;对于能量系统,只需要用T和λ对基本单元个体计量,即是能量和动量。
五、两种运动
讨论过物理学不应该使用“物质”这个哲学范畴,明确了物理客体分质量、能量两个系统,确立了质量、电量、能量和时空是基本的物理量,并且弄清了时(T)空(λ)可以直接作为计量能量和动量的基本量,不同时空结构又分别是驱动质量或电量的基本作用量之后,还应该讨论一下运动形式问题。
亚里士多德很早就提出自然运动和强迫运动区分之必要,物理学界至今都没有认真对待。所谓自然运动,应该是不受人的干预,不准附加任何人为条件的运动,比如自由落体、自组织系统的变化和行星运转等(下文称绝对运动);所谓的强迫运动当指人为增添了特设条件的运动,比如将物体抬高、摆钟和日常生活中经常发生的许多运动。
牛顿力学除自由落体之外,几乎都有附加条件,将运动定义为一个物体对另一个物体的位移,运动的基点建立在物体对物体的作用(即力)之上,并将物体看作一个质点等,基本上都属于质量系统的相对运动。现代物理学发现的因果关系被破坏,基本上都产生于对绝对运动和相对运动的作用机制之混淆。
“一个钟所处的引力势越低(深),它走得越慢,而那里发出的光在引力势较高处去接收就会发生红移”〔5-92〕,亦即是说原子钟在那里发出的光频率较小,周期变大。如果是摆钟,依据T=2πL/g,由于g变大,周期就必然变小。两种钟的结果居然完全相反,基于什么原因呢?这就恰好能够说明相对运动和绝对运动的作用机制不同,显示的结果就必然会适得其反。由于原子钟的频率直接决定于能量子的频率,属于绝对运动;而摆钟的周期则由作用量g与弹性势的平衡决定,属于相对运动,g变大时相对而言等于固定不变的弹性势变小,故而钟的周期亦随之变小。“量子理论和每一种合理的真实世界观念都冲突”〔6-127〕;“量子力学改变了古典物理学的因果观和实在论”〔2-328〕。这些观念产生于发现了绝对运动和相对运动效果迥异,感到困惑的原因是没有树立起时间和空间“不再是事件在其中发生的被动的背景”,“相反的,它们现在成为动力学的量”〔4-53〕,根源在于没有突破“物质”一元论的樊篱。
问起广义相对论场方程的意义,通常的回答是:“物质和能量要使时空向其自身弯曲”〔4-60〕,反过来弯曲时空的曲率又决定着物体运动的路径。这种表述本来存在一个因果互易的逻辑循环,只需要将误用概念“物质”去掉,就变成了非常明晰的单因(能量)决定单果(质量运动路径)的关系。再如“势函数V表示质量系统对空间任意点的引力作用”〔2-361〕,实质上则是势函数表示任意时空点对质量的趋动作用。作用和被作用的因果关系弄颠倒的原因,许多都出在用相对运动的观念去解释绝对运动;产生这种观念的根源又非常久远和牢固,先是哲学上把物质说成第一性,继而近代科学一开始就决定只研究属于第一性的质量和重量,外加担心宗教神学找麻烦,所有物理学理论就都必须把物质或质量说成是运动变化的起因。依据两系统结构论,动因仅来源于能量系统。
宇观上的星体都是绝对运动,很早很早之前就受到许多哲人的关注,他们的不少观点由于跟相对运动的理论不合,都受到了冷遇。欧拉认为“一切物理过程都是以太与物质相互作用的结果”〔2-180〕,欧多克斯认为“日、月和行星分别固定在想象的匀速转动的天球上,星体本身不动,它们随着天球运动”〔2-51〕,笛卡尔的观点更明确:“宇宙空间充满媒质的旋涡运动,天体被媒质的旋涡推动”〔2-145〕;最直观形象的描述莫过于那个阴阳互动的太极图,那是华夏先民无数代人仰观俯察智慧的结晶。天空中所有星系或星系团无不都是一个涡旋,其中不少涡旋的中心根本就找不到质量(被称为质量丢失的暗物质)。很显然这些涡旋都是能量积累形成的畸变时空,那些特定的R3/2=K的不同旋线上,都可能会有星体在做自然运动,根本就不需要什么引力作为向心力,自然也就没有必要去找切线力的源。
易学中虽说没有“自组织”这个词,王船山却早就讲清了自组织的作用机制。“阳变阴合,乘机而为动静”,“二气之动,交感而生,凝滞而成物我之万象”,如果将质量子和能量子类比为阴阳,这种说法还满有道理的。
小结:运动有相对和绝对之别。因果关系被破坏的原因大都生之于用相对运动的理论去解释绝对运动,根源在于物质一元论不能作为物理学的哲学基础。
六、唯物宇宙观
科学思想作为文化的一部分,在相当长的时间内世界各地都是沿着自己的传统在发展;从16世纪开始,随着西方殖民主义的掠夺,希腊传统的科学逐渐传播到世界各地。如今所说的近代科学,主要指希腊科学传统的扩展,其间也不乏阿拉伯、中国和印度等地科学成果的积累。物理学思想的发展在很大程度上跟古希腊哲学有着非常密切的关系,古希腊哲学的自然观主张人与自然分离。
在古希腊文化传统中,从公元1世纪基督教创立开始,就出现了理性和信仰、哲学和神学的纷争,科学思想的发展亦被打上深深的烙印。基督教成为国教之后,“知识服从信仰”成为教会的基本准则之一,于是就有人提出“学问来源于经验”与之抗衡。
基督教创立不太久,某些护教派发现那些愚昧贫乏的教义抵抗不住古希腊、罗马文化,特别是哲学,就开始从古希腊、罗马哲学中寻找为教义辩护的依据,从而发展出貌似科学的神学,进而宣布真正的哲学和真正的宗教是同一的和信仰先于理性的原则。中世纪的欧洲几乎一切学术都在宗教神学的桎梏之下,自然科学也不例外,布鲁诺被活活烧死,伽利略遭受终生监禁,都因为他们的理论对神学不利。
唯物主义宇宙观针对信仰先于理性提出物质第一性、意识第二性,自然科学总算找到了哲学基础。由于近代科学确定只研究属于第一性的质量和重量,而不研究与感觉有关的第二性,即把意识范畴留给宗教,总算争得了一席之地。当我们立足于现代科学的成果和困惑,去反思物理学发展的历史时发现,把物质和意识的关系视为全部、特别是近代哲学重大基本问题的唯物主义哲学,根本就不能作为物理学的理论基础。为了从神学桎梏下挣脱出来,选择第一性、第二性之分的哲学虽说必要,终归总逃不掉为临时应付而“举债”付出更高的代价。
物质和意识对立,对立的双方是自然和人,这是古希腊自然与人分离自然观的延续。这种哲学适用的范围应该是人天系统,即探讨的中心课题是人与自然的关系;而物理学则属于纯客观地探讨自然界的秩序和原理的学问,亦即是说它只研究物质和物质之间的联系、相互作用和运动变化规律等问题,丝毫不涉及物质与意识关系的内容。故而我们认为,唯物主义宇宙观虽说使物理学摆脱了宗教神学的束缚,而成为一门独立的学科,却不能做为物理学的哲学基础。
自然界是一个有机整体,要探讨其运动变化的规律,就不应该将所有的物理客体用“物质”一个概念概括。因为变化只能发生在至少两种客体之间,如MN和NM;而MM则是永远无法观测的。
“科学史界越来越多的学者认识到,站在现代科学的立场寻找历史来龙去脉的做法有误入歧途的危险,转而采取从原来的境况中重新阐释科学思想”〔7-2〕,不少人发现了《周易》中保留着自然学的原初形式,可以为科学发展提供有益的哲学启迪。本人沿着这条进路摸索多年,学习探寻的心得是,物理学只有依据两系统结构论的自然观,才可以讨论变与不变。
易以道阴阳;万物负阴而抱阳,冲气以为和;阴变阳,阳变阴,其变无穷;阳变阴合,乘机而为动静;二气之动,交感而生,凝滞而成物我之万象——仅依据上述五句富涵哲理的格言,对物质、时间、空间、运动和因果关系等重要概念做一些简要的剖析,就可以理出一条新的思路。如果依据两系统结构论,对物理学的概念和理论进行一次新的整合与梳理,极有可能会将物理学带出当前的困境。不当之处,敬请各位师长、同仁指正。
参考书目:
1、朱伯昆主编《国际易学研究》第三辑,华夏出版社1997年版
2、董光璧等著《世界物理学史》吉林教育出版社1994年版
3、《马克思恩格斯选集》第三卷人民出版社1972年版
4、(英)霍金著《霍金讲演录》湖南科技出版社1995年版
5、倪光炯等著《近代物理》上海科技出版社1979年版
热门推荐