培养学生数学思维能力范例(3篇)
时间:2025-10-31
时间:2025-10-31
关键词:小学数学;思维能力
中图分类号:G622文献标识码:B文章编号:1002-7661(2015)08-098-01
教育家赞可夫指出:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”也有人说过:“兴趣是最好的老师。”这些都是站在自自的立场上来阐明思维与兴趣的重要性,把思维与兴趣分开来看。如果把两者结合起来,将会更加完美,达到1+1=1,或1+1>2的效果。
随着教学改革的深入发展,在数学教学中有目的、有计划、有步骤地培养学生的思维能力,是每个教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生学习兴趣是非常重要的环节。从心理角度而言,如抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,加工有利于发现事物的新要素,并进行探索创造。兴趣是学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习取得事半功倍的效果。我在充分发挥教师的主导作用的前提下,对激发学生兴趣谈几点体会。
一、观察能力的培养,学习兴趣的产生
观察能力是认识事物,增长知识的重要能力,是智力因素构成的重要部分。在小学数学教学中必须引导学生掌握基本的观察方法,学会在观察时透过事物表象,抓住本质,发现规律,达到不断获取知识,培养能力,发展智力的目的。我认为人们对知识的认识和积累都是通过观察实践而得到的。没有观察就没有丰富的想象力,也不可能有正确的推理、概括和创造性,所以有意识地安排学生去观察思考,逐步培养学生的观察能力,发展学生的想象力。既增加了数学的趣味性,又创造了良好的课堂气氛。
二、加强直观教学,培养学习兴趣
在教学中教师单从提高语言表达能力和语言“直观”上下功夫,还是远远不够的。要解决数学知识的抽象性与形象性的矛盾,还应该充分利用直观教学的各种手段。“直观”具有看得见,摸得着的优点,“直观”有时能直接说明问题,有时能帮助理解问题,给学生留下深刻的印象,使学生从学习中得到无穷的乐趣。由直观感知上升到抽象的理解。有了这个基础求一个数比另一个数多(少)多少的教学就根顺利了,体现了“直观”教学的优越性。
三、重视操作,培养实际动手能力
―位教育家这样说过:“儿童的智慧就在他的手指尖上”。许多事实证明科学是动手“做”出来的。我们在学习数学的过程中,也要学会“做”数学,比如量身高,可以帮助我们理解米和厘米等长度单位的概念,对其有具体的感知;走一段路程,可以帮助我们正确理解“千米”的含义;称称一两块砖和一两枚硬币,可以帮助我们弄清“千克”和“克”的区别;剪几个对等的三角形拼成长方形或平行四边形,又可让我们得出并掌握三角度面积的计算方法。总之,在动手操作的过程中,可以引发我们创造性地思维。
在数学教学中教师要特别重视和发展学生的好奇心,让每一位学生养成爱想问题、问问题以及延伸问题的习惯,让所有的学生都知道自己有权利和能力去发现新问题,提出新见解。以下再对培养思维简单地谈一谈。
1、善于运用启发法和发现法,启发学生思维的积极性
一个优秀的教师会懂得针对不同的学生能力差异,采取不同适合学生的教学方式。面对同一道数学题,用什么样的语言表达让学生尽快地接受。如果起题意不懂,便可采用启发、举例的方法让学生接受,发现突破口,用通俗简易的手势或图形来化繁为简。这样可以增加学生的兴趣和对思维的积极性。使学生在掌握教师的方法下,通过发散性思维,使他们明白学习方法的重要性,从而产生爱动脑筋、思考问题的习惯。
2、精心设计教学内容,培养学生的求异思维
这一点要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,而不是仅仅停留在表面上做功夫。教师还应将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的,让学生们理解各学科之间的联系,并且融会贯通,从真正意义上产生对知识需求的渴望。
3、利用一题多解培养学生的“立体思维模式”
一题多题是学生产生浓厚兴趣的基础,也是培养锻炼学生思维能力的重要源泉下面我们就来举一个一题多解的例子。
一辆摩托车上午3小时行驶了163.5千米,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。综合算式是163.5÷3×2+163.5=272.5(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:163.5÷3×(3+2)=272.5(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:l63.5×2-163.5÷3=272.5(千米)。其中,163.5×2,表示行驶6小时的千米数,163.5÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶千米数了。这便是一种创新的解法。
关键词:思维能力逻辑激活
一、培养学生的逻辑思维能力是小学数学教学中一项重要任务
思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。
《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。
二、培养学生思维能力要贯穿在小学数学教学的全过程
从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。
怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。
(一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中
要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。
(二)培养学生思维能力要贯穿在每一节课的各个环节中
不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。
(三)培养思维能力要贯穿在各部分内容的教学中
这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。
三、设计好练习题对于培养学生思维能力起着重要的促进作用
一、设计设疑,诱发学生积极思维
亚里士多德认为:“思维自疑问和惊奇开始。”在课堂上设计一个好的问题是激发学生思维火花的催化剂。特别在数学教学过程中,教师要善于设疑才能激起学生的积极的思维,再通过释疑、解决问题等环节,使学生实现掌握知识、开发智力和形成良好思维习惯的目标。
例如,在教学《商不变性质》一课时,我先利用多媒体课件向学生播放了猴王分桃的故事:今天花果山上特别热闹,因为今天是一年一度的分桃节。桃树上挂满了桃子,桃树下坐着一群猴子,它们等猴王来分桃子。大家都希望能多分到一些桃子。猴王准时来到。猴王对小猴子说:“给你6个桃子,平均分给3只猴子吧。”小猴子说:“太少了。太少了。”猴王说:“那就给你60个桃子,平均分给30只猴子,怎么样?”小猴子挠挠头皮说:“大王,请你开恩,再多给点吧。”猴王一拍胸脯说:“那好吧,给你600个桃子,平均分给300只猴子,这下总该满意了吧?!”可小猴还是一个劲地嚷着:“不够!不够!”这时,我就问学生:为什么猴王把桃子数增加了那么多,小猴子还是说不够呢?这就是我们今天要学习的新内容。学生一听这是学习的新内容,学习兴趣一下子就被激发了出来。于是我将小猴三次分桃的过程用三个算式表示成:6÷3=2,60÷30=2,600÷300=2,然后让学生观察这三个算式的特点及变化规律,从而得出了“商不变性质”这一结论。学生就在如此轻松、愉快的氛围中弄清楚了知识的形成过程和结果。
二、通过猜想,培养学生的思维品质
猜想是一种创造性思维活动,它可导出新颖独特的思维成果。在数学课堂教学中,数学猜想是教师在教学活动过程中,因势利导,指导学生进行探索,进行积极思维的认识活动。
1.通过猜想,培养思维的独创性。
现代教学是发生在教师和学生之间互相传输信息的过程,因而在教学方法上,教师必须最大限度地调动学生的学习积极性,鼓励他们“标新立异”,激发他们猜想更好的方法。
例如,计算8+98+998+9998+99998=?若采用逐项累加法,结果非常繁琐。若引导学生猜想将8分解成2+2+2+2,然后利用加法交换律和加法结合律进行计算,即原式=2+2+2+2+98+998+9998+99998=(2+98)+(2+998)+(2+9998)+(2+99998)=100+1000+10000+100000=111100,很快就能得出计算结果,让学生体验到学习的乐趣。这样,通过充分引导学生大胆猜想,能激发学生的学习兴趣,同时也能培养学生思维的独创性。
2.通过猜想,培养思维的发散性。
发散思维是创造思维的重要组成部分。它不受一定的解题模式的束缚,从问题个性中探求共性,寻求变异,沿着不同方向,不同角度去猜想、延伸、开拓。在数学教学中,教师一般可采用一题多解的训练,培养和锻炼思维的发散性。
例如,李军家与学校之间的距离是1020米,李军3分钟走255米,照这样计算,李军到学校还需几分钟?(启发学生用不同的思考方法探解。)
解法1:求李军到学校还需几分钟,就是求余下的路程所需的时间。“从3分钟行255米”,可求出李军速度为(255÷3),而余下的路程是(1020-255),然后根据“路程÷速度=时间”得出:(1020-255)÷(255÷3)=9(分)。
解法2:求李军到学校还需几分钟,也可先求李军走完全程的时间,然后减去已行路程的时间,即得到余下路程的时间1020÷(255÷3)-3=9(分)。
解法3:用倍比法解,将已行的路程255米看作“1”倍数,全程1020米是已行的255米的4倍,行255米用3分钟,那么行完全程1020米就得用12分钟,然后减去已行的时间,即得出:3×(1020÷255)-3=9(分)。
通过上述的练习,引导学生从多种角度、不同方向思考问题,这不仅能提高学生灵活运用知识的能力和解题技巧,而且可以发挥学生的独特见解,增强思维发散性的辐射力。此外,一题多变、一空多填等训练,同样也能培养和锻炼学生发散性思维品质。
3.通过猜想,培养思维的灵活性和敏捷性。
“好动、好想、好奇”是学生共同具备的心理特征。教师应抓住学生这一心理特征,鼓励学生大胆猜想,使学生自觉地沟通数学知识的纵横联系,挖掘隐含条件;巧妙地构造某个数学对象,迂回转化;灵活地运用各种思维方法和方式,找出解题的各种途径。
例如,求下图的周长(单位:cm)。
若此题仅会运用周长定义把每条边长相加:6+12+10+8+(10-6)+(12-8)=44(cm),这就显得思维呆板了。若能猜想到将原多边形添上辅助线转化成一个长方形。如图:
原线段a和b的长度就是两条辅助线的长度,这时只需采用长方形周长计算公式进行运算,就能得到本题的结果,即(12+10)×2=44(cm)。
三、新旧贯穿,提升学生的思维层次
数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引申和发展,学生的认识活动也总是以已有的旧知识和经验为前提。在此类知识教学中,教师要尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中提升学生的思维层次。
例如,在教学《梯形的面积》一课时,我先复习平行四边形面积公式推导的方法,然后根据梯形面积公式推导的方法与平行四边形面积公式推导的方法相似,进而采用平行四边形面积公式推导的方法来推导梯形面积的公式:先将图形转化成已经会计算面积的图形,然后通过探索研究图形与已学图形之间的联系,从而找出梯形面积的计算方法。这样既能引导学生复习旧知识,又把新知识纳入原来的知识系统中,使前后知识得到有机衔接,融会贯通,丰富学生的知识,提升学生的思维层次。
上一篇:企业财务风险的概念范例(3篇)
下一篇:科技农业的好处(6篇)
热门推荐