七年级数学上册教案(整理14篇)

时间:2024-01-16

七年级数学上册教案篇1

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?()。

3.看到这儿,你发现什么规律了吗?

4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6.尝试练习

【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1.感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的'圆形图和线段图,若没有学生提出,教师自己提出。)

2.利用线段图直观感受相加之和等于“1”。

(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

3.课堂小结。

对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4.举一反三。

其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

三、练习巩固

1.基础练习。

(1)学生独立计算。

(2)全班交流反馈。

【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

解决问题

(1)全班读题,学生独立思考。

(2)指名回答。

(3)根据学生回答情况,连线(课件演示)。

(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

四、课堂总结

快下课了,请你来说说这节课有什么收获?

课后反思:

图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

七年级数学上册教案篇2

教学目标

1.知识与技能

①理解有理数的意义;

②能把给出的有理数按要求分类;

③了解0在有理数分类的作用。

2.过程与方法

经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

3.情感、态度与价值观

通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

教学重点难点

重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的.两种分类.

教与学互动设计

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

说明:我们把所有的这些数统称为有理数.

七年级数学上册教案篇3

一、教学目标

1、知识与技能:

(1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

(2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

二、教学重点、难点关键

1、教学重点:角的概念、表示方法及角度制的换算

2、教学难点:角的表示方法、角度制的换算

3、关键:学会观察图形是正确表示一个角的关键

三、学情分析

角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

四、教学准备

为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

五、教学用具:

量角器

六、教学过程

(一)引入新课

1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

2提出问题:

时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

(二)活动探究,建构新知

活动一

角的概念

师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

b、角也可以看成由一条射线绕着它的'端点旋转而成的图形。

(学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

活动二

角的表示

师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)

生:角的表示方法有:

1、角的符号+三个大写字母,如:∠aob

2、角的符号+一个大写字母,如:∠o

(顶点处只有一个角时)

3、角的符号+数字如:∠1

4、角的符号+希腊字母如∠α

师:在用这些方法表示角的时候应该注意些什么呢?

生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

(在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

尝试应用,反馈矫正

师:请同学们完成下面的练习

1、图中共有多少个角?请分别表示出来。

c

2、将图中的角用不同方法表示出来并填写下表

b

b

∠1

∠bca∠3∠4abc

ceda

获得积极深层次的体验,从而促进学生探究能力的发展)

活动三

角的度量与比较

ab

师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

1、先估测图中所示各个角的大小

2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

4、对于角的比较大小,你还能有什么好的方法吗?

生:1、∠b最大

2、∠a=28°∠b=91°∠c=45°

量角器的使用方法:“一对中,二合线,三读数”

1、点b射门最好。

2、对于角的比较大小,也可以通过叠合的方法来比较。

(通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

(三)巩固练习,迁移新知

试一试1、如图打台球的时候,球的反射角总是等于入射角。

请同学们估测球反弹后会撞击图中的哪一点?

(问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

出哪些有关的角的和与差的关系式?o

dac

b

(问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

(问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

(1)度、分、秒是常用的角的度量单位;

(2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

(四)归纳总结,系统知识

师:本节课学习了哪些知识?

生:学习了角的概念、角的表示、角的比较与度量,角的换算。

师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

(五)布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

七年级数学上册教案篇4

教学目标:

知识与能力

能正确运用角度表示方向,并能熟练运算和角有关的问题。

过程与方法

能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

情感、态度、价值观

能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

教学重点:方位角的表示方法。

教学难点:方位角的准确表示。

教学准备:预习书上有关内容

预习导学:

如图所示,请说出四条射线所表示的方位角?

教学过程;

一、创设情景,谈话导入

在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

二、精讲点拔,质疑问难

方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

三、课堂活动,强化训练

例1如图:指出图中射线OA、OB所表示的方向。

(学生个别回答,学生点评)

例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

(小组讨论,个别回答,教师)

例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

(教师分析,一学生上黑板,学生点评)

四、延伸拓展,巩固内化

例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

(1)请按比例尺1:000画出图形。

(独立完成,一同学上黑板,学生点评)

(2)通过测量计算,确定船航行的`方向和进度。

(小组讨论,得出结论,代表发言)

五、布置作业、当堂反馈

练习:请使用量角器、刻度尺画出下列点的位置。

(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

(3)点C在点O的西北方向上,同时在点B的正北方向上。

作业:书P1407、9

七年级数学上册教案篇5

教学目标

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

2.能将用科学记数法表示的数还原为原数.(重点)

教学过程

一、情境导入

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

二、合作探究

探究点一:用科学记数法表示大数

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()

A.167×103B.16.7×104

C.1.67×105D.1.6710×106

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的`值以及n的值.

例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()

A.9.34×102B.0.934×103

C.9.34×109D.9.34×1010

解析:934千万=9340000000=9.34×109.故选C.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数

例3已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=20100;

(2)6.070×105=607000;

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|<10,n是正整数.

(3)n比原数的整数位数少1.

教学反思

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

七年级数学上册教案篇6

【教学目标】

知识与技能:了解并掌握数据收集的基本方法。

过程与方法:在调查的过程中,要有认真的态度,积极参与。

情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】

重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】

讲授新课

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的`机会被抽到,像这样的抽样方法是一种简单随机抽样。

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

学生小组合作、讨论,学生代表展示结果。

教师指导、评论。

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答。

师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;

(3)某种玉米种子的发芽率;

(4)学校门口十字路口每天7:00~7:10时的车流量。

七年级数学上册教案篇7

一、教学目标:

(一)教学知识点

1、与身边熟悉的事物做比较感受百万分之一等较小的数据并用科学记数法表示较小的数据。

2、近似数和有效数字并按要求取近似数。

3、从统计图中获取信息并用统计图形象地表示数据。

(二)能力训练要求

1、体会描述较小数据的方法进一步发展数感。

2、了解近似数和有效数字的概念能按要求取近似数体会近似数的意义在生活中的作用。

3、能读懂统计图中的信息并能收集、整理、描述和分析数据有效、形象地用统计图描述数据发展统计观念。

(三)情感与价值观要求:

1、培养学生用数学的意识和信心体会数学的应用价值。

2、发展学生的创新能力和克服困难的勇气。

二、教学重点:1。感受较小的数据。

1、用科学记数法表示较小的`数。

2、近似数和有效数字并能按要求取近似数。

3、读懂统计图并能形象、有效地用统计图描述数据。

教学难点:形象、有效地用统计图描述数据。

教学过程:创设情景引入新课

三、讲授新课:请你用熟悉的事物描述一些较小的数据:大象是世界上最大的陆栖动物它的体重可达几吨。世界第一高峰——珠穆朗玛峰它的海拔高度约为8848米。

1、哪些数据用科学记数法表示比较方便?举例说明。

2、用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成其中氢原子的直径约为0.0000000001米。

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136000000千克;

(4)20xx年5月19日国家邮政局特别发行“万众一心抗击‘非典’”邮票收入全部捐给卫生部门用以支持抗击“非典”斗争其邮票的发行量为12500000枚。

四。课时小结:我们这节课回顾了以下知识:

1、又一次经历感受了百万分之一进一步体会描述较小数据的方法:与身边事物比较进一步学习了利用科学记数法表示较小的数据。

2、在实际情景中进一步体会到了近似数的意义和作用并按要求取近似数和有效数字。

3、又一次欣赏了形象的统计图并从中获取有用的信息。

(1)根据上表中的数据制作统计图表示这些主要河流的河长情况你的统计图要尽可能的形象。

(2)从上表中的数据可以看出河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流你认为河流年径流量与河流所处的地理位置有关系吗?

制作形象的统计图首先要处理好数据即从表格中计算出这几条河流长度的比例然后选择最大或最小作为基准量按比例形象画出即可。

(1)形象统计图(略)只要合理即可。

(2)从表中的数据看出河流越长其流域面积越大。

(3)河流的年径流量与河流所处的位置有关系。

五。课后作业:

七年级数学上册教案篇8

学习目标

1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的'过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

《2.1.3多项式》同步四维训练含答案

新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

《2.1.2多项式》课时练习含答案

1.下列说法中正确的是()

A.多项式ax2+bx+c是二次多项式

B.四次多项式是指多项式中各项均为四次单项式

C.-ab2,-x都是单项式,也都是整式

D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

2.如果一个多项式是五次多项式,那么它任何一项的次数()

A.都小于5B.都等于5

C.都不小于5D.都不大于5

3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是()

A.a10+b19B.a10-b19

C.a10-b17D.a10-b21

4.若xn-2+x3+1是五次多项式,则n的值是()

A.3B.5C.7D.0

5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

7.多项式的二次项系数是.

8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a。

(1)请把游戏最后丁所报出的答案用整式的形式描述出来;

(2)若甲取的数为19,则丁报出的答案是多少?

七年级数学上册教案篇9

学习目标:

知识:对顶角邻补角概念,对顶角的性质。

方法:图形结合、类比。

情感:合作交流,主动参与的意识。

学习重点:

对顶角的概念、性质。

学习难点及突破策略:

“对顶角相等”的探究;小组讨论

教学流程:

【导课】

同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。

【阅读质疑,自主探究】

请大家阅读课本P,回答以下问题(自探提纲):

1、两条相交的直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的`位置关系?存在怎样的大小关系?

2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?

3、对顶角有什么性质?你是怎样得到的?

【多元互动,合作探究】

同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:

1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。

2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。

3、“对顶角相等”的推导过程。

七年级数学上册教案篇10

教学目标

1.进一步掌握有理数的运算法则和运算律;

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力.

教学重点和难点

重点:有理数的混合运算.

难点:准确地掌握有理数的运算顺序和运算中的符号问题.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.计算(五分钟练习):

(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;

(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;

(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

(24)3.4×104÷(-5).

2.说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的`混合运算,按怎样的顺序进行运算?

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.

审题:(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

七年级数学上册教案篇11

【知识与技能】

1.了解无理数和实数的概念,会将实数按一定的标准进行分类.

2.知道实数与数轴上的点一一对应.

【过程与方法】

1.了解无理数和实数的概念,适时拓展数的观念.

2.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.

【情感态度】

从分类、集合的思想中领悟数学的内涵,激发兴趣.

【教学重点】

正确理解实数的概念.

【教学难点】

对“实数与数轴上的点一一对应关系”的理解.

一、情境导入,初步认识

问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.

引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?

【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.

二、思考探究,获取新知

例1

(1)试着写出几个无理数.

(2)判断下列各数中,哪些是有理数?哪些是无理数?

《实数》课时练习含答案

1.把几个数用大括号围起来,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.下列集合为好的集合的是()

A.{1,2}B.{1,4,7}C.{1,7,8}D.{﹣2,6}

答案:B

知识点:实数.

解析:根据题意,利用集合中的数,进一步计算8﹣a的值即可.

解:A、{1,2}不是好的集合,因为8﹣1=7,不是集合中的数,故错误;

B、{1,4,7}是好的集合,这是因为8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的数,正确;

C、{1,7,8}不是好的集合,因为8﹣8=0,不是集合中的数,故错误;

D、{﹣2,6}不是好的集合,因为8﹣(﹣2)=10,不是集合中的数,故错误;

故选:B.

本题考查了有理数的加减的`应用,要读懂题意,根据有理数的减法按照题中给出的判断条件进行求解即可.

《6.3实数》专项测试题

1、下列说法正确的是()

A.单独的一个数或一个字母也是代数式

B.任何有理数的绝对值都是正数

C.如果两个数的绝对值相等,那么这两个数相等

D.数轴上的任意一个点都可以表示一个有理数

【答案】A

【解析】解:数轴上的点可表示为有理数和无理数。

两个数的绝对值相等,这两个数相等或者互为相反数。

绝对值是()。

2、下列说法正确是()

A不存在最小的实数B有理数是有限小数

C无限小数都是无理数D带根号的数都是无理数

七年级数学上册教案篇12

教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想.

教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数.

教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.

注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号.

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的`次数与单项式的次数的区别与联系,渗透类比的数学思想.)

2.例题:

例1:判断:

①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

②多项式3n4-2n2+1的次数为4,常数项为1.

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

例2:指出下列多项式的项和次数:

(1)3x-1+3x2;(2)4x3+2x-2y2.

解:(1)三项,二次;(2)三项,三次.

例3:指出下列多项式是几次几项式.

(1)x3-x+1;(2)x3-2x2y2+3y2.

解:(1)三次三项式;(2)四次三次式.

例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.

(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

三、课堂小结:

①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)

教学后记:

从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.

七年级数学上册教案篇13

1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

分析题目中的数量关系,用式子表示数量关系.

(设计者:)

一、创设情境明确目标

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

(1)2h行驶的路程是多少?3h呢?th呢?

(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

二、自主学习指向目标

自学教材第54至55页,完成下列问题:

1.假设列车的行驶速度是100km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

(1)列车2h行驶的路程为__200__km.

(2)列车3h行驶的路程为__300__km.

(3)列车th行驶的路程为__100t__km.

2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

三、合作探究达成目标

用字母表示数

活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

(3)一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积;

(4)用式子表示数n的相反数.

【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

【小组讨论】用字母表示数有什么意义?

【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

【针对训练】见“学生用书”.

用字母表示简单的数量关系

活动二:阅读教科书例2中的四个问题,思考:

顺水行驶时,船的速度=________+________;

逆水行驶时,船的速度=________-________.

解答过程见教材第55页例2的解答过程.

【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.

注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

2.字母和数字相乘时,省略乘号,并把数字放到字母前;

3.出现除式时,用分数的形式表示;

4.结果含加减运算的,需要带单位时,式子要用“()”;

5.系数是带分数时,带分数要化成假分数.

【针对训练】见“学生用书”.

四、总结梳理内化目标

1.用字母表示数的`意义.

2.用含有字母的式子表示数量关系的意义.

3.用含有字母的式子表示数量关系时要注意的问题.

实际问题―→用字母表示数―→用字母表示数量关系

《2.1整式》同步练习含答案

1.其中长方形的长为a,宽为b.

(1)阴影部分的面积是多少?

(2)你能判断它是单项式或多项式吗?它的次数是多少?

《2.1整式》课后练习含答案

知识要点

1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

(1)不含加减运算;

(2)可以含乘、除、乘方运算,但分母中不能含有字母.

2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

4.整式:单项和多项式统称整式.

七年级数学上册教案篇14

教学目标

知识与技能:

1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

2.能利用求代数式的值解决较简单的实际问题;

过程与方法:

3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.

情感态度价值观:

5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.

教学重点

理解代数式的意义,会求代数式的值

教学难点

利用代数式求值推断代数式所反映的规律

教学方法

引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

教学准备

多媒体,或投影仪,胶片

课时安排

1课时

教学过程

Ⅰ.巧设情景问题,引入课题

[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.

下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.

下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

[生1]图1的输出结果是:6x-3.

图2的转换步骤:-3、×6.

[师]这位同学书写的跟你们的一样吗?

[生齐声]一样.

[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.

我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.

今天我们就来研究第三节:代数式求值.

Ⅱ.讲授新课

当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)

输入-2-

00.26

4.5

图1输出

图2输出

(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.

[生]

[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)

议一议:

填写下表,并观察下列两个代数式的值的变化情况:

(1)随着n的值逐渐变大,两个代数式的值如何变化?

(2)估计一下,哪个代数式的值先超过100?

(学生积极发言,大多同学填得对)

[生]

[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.

[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.

根据值的变化趋势,我估计:n2的值先超过100.

[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.

下面我们来做练习,进一步体会本节课的内容:

Ⅲ.课堂练习

(一)课本P99随堂练习

1.人体血液的质量约占人体体重的6%~7.5%.

(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

(2)亮亮的'体重是35千克,他的血液质量大约在什么范围内?

(3)估计你自己的血液质量?

答案:(1)6%a千克~7.5%a千克

(2)亮亮的血液质量大约在2.1千克到2.625千克之间

(3)让学生估计计算一下

2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

h=4.9t2,在月球上大约是:h=0.8t2.

(1)填写下表

(2)物体在哪儿下落得快?

(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.

答案:(1)

(2)地球

(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

(二)试一试

1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

解:本题可列表进行比较.

通过估计得:当|a|>2时,a2-a>0

2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?

解:

从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.

Ⅳ.课时小结

通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.

(2)计算.

Ⅴ.课后作业

(一)看课本P98;P99的读一读.

(二)课本习题3.31、2、3、4.

(三)(1)预习内容:P102~103

(2)预习提纲

1.项的系数和项的概念.

2.进一步理解字母表示数的意义.

Ⅵ.活动与探究

1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.

结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

a2+b2+2ab=(a+b)2

根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

2.已知=7,求的值.

过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.

结果:因为=7,所以:=.

所以:原式=2×7-×=13.

板书设计

§3.3代数式求值

一、“数值转换机”求值三、课堂练习

二、议一议

四、课时小结

规律五、课后作业

更多范文

热门推荐