高一数学教案(整理11篇)
时间:2024-09-06
时间:2024-09-06
第二十四教时
教材:倍角公式,推导和差化积及积化和差公式
目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。
过程:
一、复习倍角公式、半角公式和万能公式的推导过程:
例一、已知,,tan=,tan=,求2+
(《教学与测试》P115例三)
解:
又∵tan20,tan0,
2+=
例二、已知sincos=,,求和tan的值
解:∵sincos=
化简得:
∵即
二、积化和差公式的推导
sin(+)+sin()=2sincossincos=[sin(+)+sin()]
sin(+)sin()=2cossincossin=[sin(+)sin()]
cos(+)+cos()=2coscoscoscos=[cos(+)+cos()]
cos(+)cos()=2sinsinsinsin=[cos(+)cos()]
这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)
例三、求证:sin3sin3+cos3cos3=cos32
证:左边=(sin3sin)sin2+(cos3cos)cos2
=(cos4cos2)sin2+(cos4+cos2)cos2
=cos4sin2+cos2sin2+cos4cos2+cos2cos2
=cos4cos2+cos2=cos2(cos4+1)
=cos22cos22=cos32=右边
原式得证
三、和差化积公式的`推导
若令+=,=,则,代入得:
这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。
例四、已知coscos=,sinsin=,求sin(+)的值
解:∵coscos=,①
sinsin=,②
四、小结:和差化积,积化和差
五、作业:《课课练》P3637例题推荐13
P3839例题推荐13
P40例题推荐13
【教学目标】
【知识与技能】
①了解两角差的余弦公式的推导;
②掌握两角差的余弦公式并能对公式进行初步的应用。
【过程与方法】
①经历大胆猜想———初步验证———理论证明———应用与拓展的数学化的过程让学生感受到知识的产生和发展;
②利用信息技术揭示单角的三角函数值与两角差的余弦值之间的关系,激发学生探究数学的积极性;
③培养学生获取数学知识、数学交流的能力;
【情感态度价值观】
①使学生体会联想转化、数形结合、分类讨论的数学思想;
②培养学生大胆猜想、敢于探索、勇于置疑、严谨、求实的科学态度。
【教学重点、难点】
重点:两角差余弦公式的探索和初步应用。
难点:探索过程的组织和引导。
【教学手段】用几何画板和powerpoint演示。
【教学流程】
创设问题情景,揭示课题
感知猜想
利用几何画板验证猜想
组织和引导学生共同合作探索公式
通过例题、练习,加强对公式的理解
回顾与反思
布置作业,引发其他公式的探究
【教学设计】
(一)创设问题情境,揭示课题
先让学生口答的正弦余弦值,再提出
问题
1、有什么关系?()
问题
2、对于a、b、c
(让学生讨论,老师归纳其讨论结果,并指出不成立。因为)
问题
3、对于任意角α、β,(设计意图:由特殊问题引发一般问题,唤起学生解决问题的意识,抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。)
(二)感性认知,提出猜想
问题:如何用任意角α和β的.正弦、余弦值来表示cos(α-β)?
虽然但学生自然猜想到它们之间有一定的等量关系,于是让学生凭借直觉,发挥想象,将sinα、sinβ、cosα、cosβ随意组合,构造出结果的表示形式。
(三)验证猜想
借助几何画板,呈现猜想的式子,计算出cos(α-β)和各式子的值,发现当随意变换角度α和β时,总有cos(α-β)和cosαcosβ+sinαsinβ的结果相等,所以猜测公式的形式可能是:cos(α-β)=cosαcosβ+sinαsinβ
(第一组验证)
(第二组验证)
(设计意图:使学生看到现代化信息技术对探讨数学问题的帮助,从而引导学生在今后的学习和工作中能重视现代信息技术的应用。)
(四)联想转化、探索论证
让学生加强新旧知识的联系,寻找已有知识点的理论支持,选定探讨方法,适时提问,逐步引导,层层推进。
问题(1)刚才的验证可靠吗?为什么?
(不可靠,它并不能代表一般性)
问题(2)对于任意的α和β,你如何证明上式恒成立呢?你联想到哪些相关知识?
1、根据学生的回答,先利用向量来证明。
问题(3)你是如何联想到向量?用向量证明得先做哪些准备?
问题(4)在图中选择哪些向量,它们如何表示?
问题(5)如何利用向量的运算构造出等式的左右两边?
问题(6)证明是否严密?若有,请你补充。
(设计意图:让学生经历利用向量知识解决一个数学问题的过程,体会向量方法解决数学问题的简洁性。)
2、利用学生对旧知识的联想提出利用三角函数线来证明。
让学生研读教材,并提出相应的问题,拓宽学生的思维。
问题(1)如何构造三角函数线来证明公式?
[教学重、难点]
认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
[教学准备]
学生、老师剪下附页2中的图2。
[教学过程]
一、画一画,说一说
1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。
2、教师巡查练习情况。
3、学生展示练习,说一说为什么是锐角、直角、钝角?
二、分一分
1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?
2、汇报:分类的标准和方法。可以按角来分,可以按边来分。
二、按角分类:
1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。
2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形
3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。
三、按边分类:
1、观察这类三角形的'边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。
2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?
四、填一填:
24、25页让学生辨认各种三角形。
五、练一练:
第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。
第2题:在点子图上画三角形第3题:剪一剪。
六、完成26页实践活动。
一:【课前预习】
(一):【知识梳理】
1.直角三角形的边角关系(如图)
(1)边的关系(勾股定理):AC2+BC2=AB2;
(2)角的关系:B=
(3)边角关系:
①:
②:锐角三角函数:
A的正弦=;
A的余弦=,
A的正切=
注:三角函数值是一个比值.
2.特殊角的三角函数值.
3.三角函数的关系
(1)互为余角的三角函数关系.
sin(90○-A)=cosA,cos(90○-A)=sinAtan(90○-A)=cotA
(2)同角的三角函数关系.
平方关系:sin2A+cos2A=l
4.三角函数的大小比较
①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.
②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(二):【课前练习】
1.等腰直角三角形一个锐角的余弦为()
A.D.l
2.点M(tan60,-cos60)关于x轴的对称点M的坐标是()
3.在△ABC中,已知C=90,sinB=0.6,则cosA的值是()
4.已知A为锐角,且cosA0.5,那么()
A.060B.6090C.030D.3090
二:【经典考题剖析】
1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.
2.先化简,再求其值,其中x=tan45-cos30
3.计算:①sin248○+sin242○-tan44○tan45○tan46○②cos255○+cos235○
4.比较大小(在空格处填写或或=)
若=45○,则sin________cos
若45○,则sincos
若45,则sincos.
5.⑴如图①、②锐角的.正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;
⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.
三:【课后训练】
1.2sin60-cos30tan45的结果为()
A.D.0
2.在△ABC中,A为锐角,已知cos(90-A)=,sin(90-B)=,则△ABC一定是()
A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形
3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________
4.cos2+sin242○=1,则锐角=______.
5.在下列不等式中,错误的是()
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()
7.如图所示,在菱形ABCD中,AEBC于E点,EC=1,B=30,求菱形ABCD的周长.
8.如图所示,在△ABC中,ACB=90,BC=6,AC=8,CDAB,求:①sinACD的值;②tanBCD的值
9.如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)
10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值域及单调性。
③注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1比较数的大小
例1比较下列各组数的大小。
⑴loga5.1,loga5.9(a>0,a≠1)
⑵log0.50.6,logЛ0.5,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的.解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9loga5.1="">loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2函数的定义域,值域及单调性。 1.1集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1)全体自然数0,1,2,3,4,5, 2)代数式. 3)抛物线上所有的点 4)今年本校高一(1)(或(2))班的全体学生 5)本校实验室的所有天平 6)本班级全体高个子同学 7)著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是() A,直角三角形B,锐角三角形C,钝角三角形D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数的全体值的集合; 3)函数的全体自变量的集合; 4)方程组解的集合; 5)方程解的集合; 6)不等式的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号或填空: 1)______Q,0_____N,_____Z,0_____ 2)______,_____ 3)3_____, 4)设,,则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为,也可以表示为,则的值等于___________ 例7、已知:,若中元素至多只有一个,求的取值范围。 思考题:数集A满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合A不可能是单元素集合。 小结: 作业班级姓名学号 1.下列集合中,表示同一个集合的是() A.M=,N=B.M=,N= C.M=,N=D.M=,N= 2.M=,X=,Y=,,.则() A.B.C.D. 3.方程组的`解集是____________________. 4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5.设集合A=,B=, C=,D=,E=。 其中有限集的个数是____________. 6.设,则集合中所有元素的和为 7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为 8.已知f(x)=x2-ax+b,(a,bR),A=,B=, 若A=,试用列举法表示集合B= 9.把下列集合用另一种方法表示出来: (1)(2) (3)(4) 10.设a,b为整数,把形如a+b的一切数构成的集合记为M,设,试判断x+y,x-y,xy是否属于M,说明理由。 11.已知集合A= (1)若A中只有一个元素,求a的值,并求出这个元素; (2)若A中至多只有一个元素,求a的取值集合。 12.若-3,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 教学内容: 义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。 教学目标: 1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。 2.数学思考目标: 能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。 3.问题解决目标: (1).能借助直观图,利用集合的思想方法解决简单的实际问题。 (2).渗透多种方法解决重叠问题的意识。 4.情感态度目标: (1)培养学生善于观察、善于思考的能力。 (2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。 教学重难点: 1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。 2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。 教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。 学法指导: 1.借图观察、分析、讨论、交流、操作。 2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。 教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。 师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频) 师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见) 师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息? 设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。 生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。 师:这么一个简单的问题怎么会有这么多不同的答案呢? 看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格) 师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法? (课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。) 师:哇!你们的摆法很独特,说说你们这样摆有什么好处? 生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。 师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。 设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。 (课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?) 2.圈一圈。 师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗? 设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。 师:为了让大家看的更清楚、更直观,请看大屏幕: (1)取消表格。 表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。 (2)捐款的移到左边,捐物的移到右边。 设计意图:感受韦恩图的形成过程,让学生亲身经历知识的.形成过程。 (4)介绍韦恩图。 师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题) 师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。 4.列式计算。 (1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。 师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。 (2)计算板演。 方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答) 师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看: 三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。 (1)既参加数学竞赛又参加作文竞赛的有几人? (2)只参加数学竞赛的有几人? (3)只参加作文竞赛的有几人? 设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。 师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。 引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题: 1.获得红花奖励的指哪些同学? 2.获得红星奖励的指哪些同学? 3.既获得红花奖励又获得红星奖励的指哪些同学? 4.只获得红花奖励的指哪些同学? 5.只获得红星奖励的指哪些同学? 6.获得红花奖励和红星奖励的一共有多少人? 设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。 请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生! 设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。 教学目标 1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项、 (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的、 (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式、 (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项、 2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力、 3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯、 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等、 (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系、在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列、函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法、由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法??递推公式法、 (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助、 (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等、如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系、 (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况、 (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的、 教学设计示例 数列的概念 教学目标 1、通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项、 2、通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想、 3、通过有关数列实际应用的介绍,激发学生学习研究数列的积极性、 教学重点,难点 教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别、 教学用具:电脑,课件(媒体资料),投影仪,幻灯片 教学方法:讲授法为主 教学过程 一、揭示课题 今天开始我们研究一个新课题、 先举一个生活中的例子:场地上堆放了一些圆钢,最底下的'一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律、实际上我们要研究的是这样的一列数 (板书)象这样排好队的数就是我们的研究对象??数列、 (板书)第三章数列 (一)数列的概念 二、讲解新课 要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数: (幻灯片) ① 自然数排成一列数: ② 3个1排成一列: ③ 无数个1排成一列: ④ 的不足近似值,分别近似到排列起来: ⑤ 正整数的倒数排成一列数: ⑥ 函数当依次取时得到一列数: ⑦ 函数当依次取时得到一列数: ⑧ 请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数、 (板书)1、数列的定义:按一定次序排成的一列数叫做数列、 为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出)、以上述八个数列为例,让学生练习了指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数、 由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定、所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系、 (板书)2、数列与函数的关系 数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集、 于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列、 遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法、 (板书)3、数列的表示法 数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法、相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第一项,……,用表示第项,依次写出成为 (板书)(1)列举法 (如幻灯片上的例子)简记为 一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法、 (板书)(2)图示法 启发学生仿照函数图象的画法画数列的图形、具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数、从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势、 有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式、 (板书)(3)通项公式法 如数列的通项公式为; 的通项公式为; 的通项公式为; 数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示、通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项、 例如,数列的通项公式,则、 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一、 除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式、 (板书)(4)递推公式法 如前面所举的钢管的例子,第层钢管数与第层钢管数的关系是,再给定,便可依次求出各项、再如数列中,,这个数列就是、 像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式、递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可、 可由学生举例,以检验学生是否理解、 三、小结 1、数列的概念 2、数列的四种表示 四、作业?略 五、板书设计 数列 (一)数列的概念涉及的数列及表示 1、数列的定义 2、数列与函数的关系 3、数列的表示法 (1)列举法 (2)图示法 (3)通项公式法 (4)递推公式法 探究活动 将边长为厘米的正方形分成个边长为1厘米的正方形,数出其中所有正方形的个数、 解:当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;当时,共有正方形个;归纳猜想边长为厘米的正方形中的正方形共有个、 一、教学目标 1、知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2、过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3、情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪四、教学思路 (一)创设情景,揭示课题 1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2、所举的.建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。 (1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2、棱柱的何两个平面都可以作为棱柱的底面吗? 3、课本P8,习题1.1A组第1题。 4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7练习1、2(1)(2)课本P8习题1.1第2、3、4题五、归纳整理 由学生整理学习了哪些内容六、布置作业 课本P8练习题1.1B组第1题 课外练习课本P8习题1.1B组第2题 学习目标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2能够在空间直角坐标系中求出点坐标 教学过程 一自主学习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面对称点; 关于坐标平面对称点; 关于坐标平面对称点; 关于轴对称点; 关于对轴称点; 关于轴对称点; 二师生互动 例1在长方体中,,写出四点坐标 讨论:若以点为原点,以射线方向分别为轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知,描出它在空间位置 例2为正四棱锥,为底面中心,若,试建立空间直角坐标系,并确定各顶点坐标 练1建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2已知是棱长为2正方体,分别为和中点,建立适当空间直角坐标系,试写出图中各中点坐标 三巩固练习 1关于空间直角坐标系叙述正确是() A中位置是可以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2已知点,则点关于原点对称点坐标为() ABCD 3已知三个顶点坐标分别为,则重心坐标为() ABCD 4已知为平行四边形,且,则顶点坐标 5方程几何意义是 四课后反思 五课后巩固练习 1在空间直角坐标系中,给定点,求它分别关于坐标平面,坐标轴和原点对称点坐标 2设有长方体,长、宽、高分别为是线段中点分别以所在直线为轴,轴,轴,建立空间直角坐标系 ⑴求坐标; ⑵求坐标; 一、教材分析 (一)地位与作用 《幂函数》选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。 这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.本节内容之后,将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究. (二)学情分析 (1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,已初步形成对数学问题的合作探究能力。 (2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。 (3)学生层次参差不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体。 (一)教学目标 (1)知识与技能 ①使学生理解幂函数的概念,会画幂函数的图象。 ②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。 (2)过程与方法 ①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。 ②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度与价值观 ①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。 ②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。 ③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。 (二)重点难点 根据我对本节课的内容的理解,我将重难点定为: 重点:从五个具体的幂函数中认识概念和性质 难点:从幂函数的图象中概括其性质。 三、教法、学法分析 (一)教法 教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。 1、引导发现比较法 因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的.角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。 2、借助信息技术辅助教学 由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。 3、练习巩固讨论学习法 这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。 (二)学法 本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。 由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。 四、教学过程分析 (一)教学过程设计 (1)创设情境,提出问题。新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。 问题1:下列问题中的函数各有什么共同特征?是否为指数函数? 由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1 这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成: 都是自变量的若干次幂的形式。都是形如的函数。 揭示课题:今天这节课,我们就来研究:幂函数 (一)课堂主要内容 (1)幂函数的概念 ①幂函数的定义。 一般地,函数 叫做幂函数,其中x是自变量,a是常数。 ②幂函数与指数函数之间的区别。 幂函数——底数是自变量,指数是常数; 指数函数——指数是自变量,底数是常数。 (2)几个常见幂函数的图象和性质 由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格 根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。 以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。 教师讲评:幂函数的性质. ①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1). ②如果a>0,则幂函数的图像通过原点,并在区间〔0,+∞)上是增函数. ③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴. ④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。 以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 (3)当堂训练,巩固深化 例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。 例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。 例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1.3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路 (4)小结归纳,回顾反思。小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题: (1)通过本节课的学习,你学到了哪些知识? (2)通过本节课的学习,你的体验是什么? (3)通过本节课的学习,你掌握了哪些技能? (二)作业设计作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.我设计了以下作业: (1)必做题 (2)选做题 (三)板书设计 板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!高一数学教案篇6
高一数学教案篇7
高一数学教案篇8
高一数学教案篇9
高一数学教案篇10
高一数学教案篇11
下一篇:六年级下册数学教案(整理11篇)
热门推荐