《小数除法》优秀说课稿(整理5篇)
时间:2024-09-27
时间:2024-09-27
今天我说课的内容九年义务教育教材小学数学第五册第二单元《小数的除法和乘法》中的一个数除以小数。
本单元内容是在学生掌握了整数乘以整数,整数除以整数的基础上进行教学的,并为以后小数四则运算的学习、较复杂的除法应用题等知识做好铺垫。本节教学是在学生已有的整数除法应用题及常见的数量关系的基础上进行的,主要解决两个方面的问题:一是为了解决除数是小数的除法计算,二是使学生掌握转化的思想。这些思想是进一步学习的有力保障。不仅能使自己获得知识,而且发展了学生学习解题能力。
依据《大纲》和《新课程标准》,结合教材内容和学生实际,我制定了如下教学目标:
1、使学生掌握除数是小数的除法的计算法则,并会运用法则计算。
2、使学生掌握如何将新问题转换为已知的旧问题去解决。
其中,让学生把除数是小数的除法转换为除数是整数是本节课的重点,当在把除数转化整数的过程中,除数位数不够的处理是难点。
紧接着说一下本课我打算采用的教法。我想根据学生的实际为学生提供现实有趣学习背景,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,引导学生通过自己的发现去学习数学,采用启发、谈话、讨论、练习等多种教法交*进行。充分让学生动脑、动口、动手,主动地参与学习。
针对本节内容特点及本班学生的认识水平,我让学生自己去搜集素材,感悟知识与现实生活密切关系、感兴趣的、从自己熟悉的题目中学会观察问题、分析问题、概括知识,并把它运用于实际的学习方法。
根据本节课的实际需要,我准备相应的课件。
接下来我认为非常有必要说一下学生的情况。因为我所设计的整个教学程序都是为了学生,每一点内容,每一个环节都必须在学生现有的认知水平和其潜在的智能基础上进行的。学生从整数除以整数过渡一个数除以小数,单纯做题不难,但要他们从中去处理一些特殊的情况就很难了。因为他们毕竟是小学生,他们解决问题的能力还有限。但如果能让他们从中获得一些数学的思想,问题就好解决了。
根据教材内容,学生认识基础、生活环境的年龄特点,我设计了如下教学程序:
一、复习引入
因为这节课是在除数是整数的基础上来学习的,所以我用了三个例子,除数都是整数的题目。后面要涉及到扩大小数或整数所以还设计了把一个数扩大10倍100倍1000倍的问题。这节课关键要用的是除数和被除数同时扩大相同的倍数,商不变。这里我让学生去发现规律,让学生总结出来。
二、自主探究,学习新知
提出课题,同时给出问题调动学生的积极性。
教材上20业的例题。
这时启发学生:如何来帮老板解决这个问题,让学生列出式子,然后给学生总结。而要求出这个式子就必须能算除数是小数的`除法,怎么算呢?
把问提摆在学生面前,激发他想解决的心情。
然后详细的讲解决的过程。
要解决这个问题就必须把他转化为已学的知识,通过什么来转化,转化的过程当中要注意些什么?这其中就用到了前面复习引入的知识。
为了更深刻的理解,紧接着有讲了解决这个问题的另外一个方法,通过单位的换算把除数是小数的除法转化为类除数是整数的出法,
比较一下这两种方法虽然过程不一样,但是最终都是把除数转化为整数。
接着举出一个较为难一点的题目,当在转化的过程中被除数的位数不够怎么办。这时就必须在末尾添零,使得除数和被除数的小数位数相同后,再去掉小数点扩大相同的倍数。最后总结出计算法则,把计算法则加上关联词,让学生掌握计算的先后顺序。
三、练习
针对这节课的重点,难点按排类两个练习。
1、如何把除数变为整数,商不变。
2、练一练第2的一种例题。
一、教材内容
1、小数除法的计算方法
2、商的近似值
3、循环小数
4、用计算器探索规律
5、用小数除法解决简单的实际问题
二、教学目标
1、掌握小数除法的计算方法,能正确地进行计算。
2、会用“四舍五入法”截取商是小数的近似值,能结合实际情况用“进一法”和“去尾法”截取商的近似值。初步认识循环小数、有限小数和无限小数。
3、能用计算器探索计算规律,能应用探索出的规律进行一些小数乘除法的计算。
4、会解决有关小数除法的简单实际问题,体会小数除法的应用价值。
三、编写特点
1、引导学生对小数除法的计算方法进行探究,体现知识的形成过程。
2、结合现实情景进行计算教学,与解决问题教学有机结合。
注意从现实情景中引出计算教学的内容,练习中也尽可能选择贴近学生生活实际的内容,如购物、乘车、计算用水量等,让学生体会计算的现实意义,提高解决实际问题的能力。
3、适时引入计算器。
小数除法计算的步骤比较多,适宜使用计算器计算。教材把握时机,不仅在新授内容和练习中让学生适时使用计算器,而且还安排用计算器探索规律的内容。使学生通过亲身体验,感受到计算器的作用的优势,同时培养灵活选择计算方法和工具的意识。
四、具体内容
标题例题安排
小数除以整数
例1、整数部分够商1,能除尽。
例2、整数部分不够商1,能除尽。
例3、除到被除数的小数末尾还有余数,需要添0继续除。
例4、总结小数除以整数的计算方法。
例5、一个数除以小数例5一个数除以小数。
例6、被除数的小数位数比除数少。
求商的近似值例7用“四舍五入法”求商的近似值。
循环小数例8、例9认识循环小数、有限小数和无限小数。
用计算器探索规律例10用计算器探索规律,并用规律来计算。
解决问题例11用连除的方法解决实际问题。
例12结合具体情景体会“进一法”和“去尾法”。
小数除以整数
教材编排的变化:
(1)不再单独教学“小数除法的意义”,而是结合3个例题的具体数量关系,让学生体会小数除法的意义与整数除法的意义相同。
(2)贴近学生的生活,体现计算与解决问题的密切联系。例1~例3,都是晨练中的具体计算问题。
(3)体现算法多样化,体现学生对计算方法的探索过程(例1);留给学生自己尝试、探索的空间(例2、例3)。
(4)不出现文字概括形式的计算法则,而是让学生通过小组讨论交流的形式,总结计算时应注意的问题(例4)。
例1:
(1)创设学生晨练的情景,解决实际问题,列出算式:22.4÷4,让学生体会小数除法的意义余整数除法的意义相同。
(2)呈现了两种计算方法:①将千米数转化为米数,把小数除以整数的除法转化成整数除法来做;②小数除以整数的一般方法。
(3)着重说明除数是整数的小数除法的计算步骤与整数除法基本相同,不同的是要解决小数点的位置问题——商的小数点要和被除数的小数点对齐。
例2:
(1)整数部分不够商1,能除尽。
(2)提出“为什么要商0呢”,启发学生理解“整数部分不够商1,要商0,点上小数点再除”的算法。
例3及“做一做”:
(1)整数部分不够商1,除到被除数的小数末尾还有余数。
(2)提出“接下来怎么除?”启发学生理解“除到被除数的小数末尾还不能除尽,要添0再除”的算法。
(3)王鹏“每天跑5分钟”是一个“多余”的条件,既可培养学生选择有用信息的能力,也可利用之提出新的数学问题。
(4)“做一做”涉及了小数除以整数的各种情况。到此,学生探讨了小数除以整数的一般情况和特殊情况,可以比较完整地掌握小数除以整数的计算方法了。
例4及“做一做”:
(1)结合前三个例题的计算,引导学生回顾总结小数除以整数的计算步骤以及要注意的问题。
(2)在“做一做”中用改错的方式,提醒学生注意计算过程中常出错的问题。
(3)没有特别说明验算的方法,让学生用已学的知识自己思考如何验算。
一个数除以小数
教材的编排:
1、例题的设计与原通用教材相同。
2、没有安排对商不变性质的复习(前面练习中安排了)。
3、没有出现文字概括形式的计算法则,不再进行总结概括。
例5:
(1)教学一个数除以小数,由编“中国结”的情境引入。
(2)用“想一想,除数是小数怎么计算”突出讨论的重点,用学生的话点明解决问题的基本方法是“把除数转化成整数”。
(3)用虚线框的图示呈现了根据商不变的性质,把除数和被除数同时扩大到原来的100倍,使除数变成整数的过程。之后出示简便的写法。
(4)教学前可先复习商不变性质。
例6及“做一做”:
(1)教学被除数的小数位数比除数小数位数少的情况。
(2)用学生提问“被除数的位数不够怎么办?”引起思考。并通过虚线框里的图示说明在把除数变成整数小数点要向右移动两位,而被除数12.6只有一位小数,要在被除数末尾用“0”补足。
(3)“做一做”第2题,呈现了小数除法中学生容易出现的两种错误,通过纠正错误,明确计算小数除法要注意的问题。
(4)到这里小数除法的教学基本完成,可以引导学生对小数除法的计算方法进行小结。小结时,要鼓励学生用自己的语言描述,再加以提炼。在学生概括的基础上,教师可引导学生把小数除法总结出三个步骤:
一看:看清除数有几位小数;
二移:把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不足时,用“0”补足;
三算:按照除数是整数的小数除法的方法计算。
商的近似数
教材编排的变化:
1、情境贴近学生的生活,体现商的近似数知识在生活中的`应用。
2、呈现用计算器计算,符合生活实际,减轻学生计算负担。
例7:
(1)通过买羽毛球的情景,说明在现实生活中会遇到除法除不尽的情况,可根据需要取商的近似数。
(2)呈现用计算器算比较复杂的小数除法,把重点放在如何根据生活实际的需要保留一定的小数位数上。
循环小数
教材编排的变化:
1、创设贴近学生生活的问题情境,在解决实际问题中引出要学习的内容。
2、体现学生观察、思考、探索商的规律的过程。
3、体现小组合作、自主探索的学习方式。
例8:
教学商从某一位起,一个数字重复出现的情况,为认识循环小数提供感性材料。
例9:
通过计算两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复出现某个数字;另一种是从某位起几个数字依次不断重复出现。由此引出循环小数的概念并介绍循环小数的简便记法。
介绍有限小数和无限小数
通过组织学生讨论“两个数相除,如果不能得到整数商,所得的商会有哪些情况”。由商的两种情况,介绍有限小数和无限小数的概念。
以前学生对小数概念的认识仅限于有限小数。到学习了循环小数以后,小数概念的内涵进一步扩展了,循环小数就是一种无限小数。
用计算器探索规律
结合小数除法的学习,教材安排了用计算器探索规律的内容,让学生感受发现规律的乐趣,同时体会计算器的工具性作用。
例10:
(1)包括“用计算器计算——观察发现规律——用规律写商”三部分。其中商的规律是:都是循环小数;循环节都是被除数的9倍,如
1÷11=0.0909…的循环节是09,
2÷11=0.1818…的循环节是18,
3÷11=0.2727…的循环节是27,
4÷11=0.3636…的循环节是36
根据这一规律就可以直接填出下面一组题的商。
(2)教学建议:
①让学生经历的发现规律的思维过程,即观察、对比、分析的过程,要给留给学生足够的独立思考时间。
②可以采用先独立发现,再小组交流的方式组织教学。
③用发现的规律写出商后,要问“你是根据什么来写这些商”,让学生说出自己应用规律的思维过程,加深对规律的理解。
解决问题:
这里安排了有特殊数量关系的连除问题(例11)和根据实际情况用“进一法”和“去尾法”取商的近似值的问题(例12)。
例11及“做一做”:
(1)需要连除解决的实际问题,特点是:总量与两个变量有关系,并随着两个变量的变化而变化。
(2)题中“7天”这个条件通过“上周”这个词隐藏了起来。
(3)通过两个学生的对话呈现了两种不同的解决问题的方法,体现了解决问题策略的多样化。
(4)两个学生的思路、解题过程都没有完全呈现,让学生自己参与完成。
(5)“做一做”的题目,在解决问题中不但要用到小数除法,还要用到小数乘法,知识的综合性更强。
(6)教学建议:①在引导学生分析数量关系时,可以采用先独立思考、再小组交流的方式进行。如果学生有困难,教师应给予必要的提示,比如问学生“能一步算出每头奶牛每天的产奶量吗”,“如果不能,那么应该先算什么,后算什么”……也可
通过线段图形象地表示数量关系。②要鼓励学生多向思维,体会解决问题策略的多样化,但不能要求每个同学都掌握多种解题方法。
例12及“做一做”:
(1)安排了两道小题,分别教学:在解决问题时,需要根据实际用“进一法”(第1小题)和“去尾法”(第2小题)取商的近似值。
(2)两题算出的结果都是小数,由于要求的瓶子数和礼品盒数都必须是整数,因此都要取计算结果的近似值。在取近似值时,不能机械地使用“四舍五入法”,而是要根据具体情况确定是“舍”还是“入”。
(3)强调“在解决实际问题时,要根据实际情况取商的近似值”。
(4)教学中,不要求学生掌握“进一法”“去尾法”这些概念,只要学生能根据具体情况掌握这些求商的近似值的方法就行了。可让学生说一说生活中哪些地方用到了“进一法”或“去尾法”,感受这些方法的现实意义。
五、教学建议
1、抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。
本单元内容与旧知识联系十分紧密。小数除法的计算法则是以整数除法中被除数和除数同时乘上相同的数(0除外)商不变,以及小数点位置移动规律等知识为基础来说明的。小数除法的试商方法、除的步骤和整数除法基本相同,不同的只是小数点的处理问题。因此,要注意复习和运用整数除法的有关知识,为新知识的学习奠定好基础。
2、联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。
小数除法的重点是突出小数点的处理问题,而商的小数点为什么要和被除数的小数点对齐要涉及数的含义。如,22.4÷4=5.6,用4除22,商5以后,余数是2,化为20个十分之一,与十分位上的4合起来是24个十分之一。4除24个十分之一,商是6个十分之一,所以商“6”应该写在商的十分位上。故此,在说明小数除法的计算方法时要联系数的含义帮助学生理解算理。
一、教学理念
教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
笔者认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。
数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。
二、教学思路
一个数除以小数”即“除数是小数的除法”是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的'除法转化成除数是整数的除法。
1、调查分析
在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的“能源”就是教学的依据,教学的资源。从上表可以得出以下结论:
(1)学生对小数除法的基础掌握的比较巩固。
(2)学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。
(3)优秀学生与学习困难生对算理的理解在思维水平上有较大差异。但对竖式书写都不规范。
笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起)
2、利用迁移,明确转化原理
理解除数是小数的除法的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是小数的除法转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。为了促进迁移,明确转化移位的原理,可设计如下环节:
(1)、小数点移动规律的复习
(2)、商不变规律的复习
(3)、移位练习
3、试做例题,掌握转化方法
明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:
①.学生试做例题6例题7,并讲出每个例题小数点移位的方法。
②.学生试做例8
③.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:
(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。
(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。
(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。
4、专项训练,提高“转化”技能
除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练:
①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②.横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。(1)判断下面的等式是否成立,为什么?
教学过程
(一)复习导入
1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?
1.20.670.7250.003
2.把下面的数分别扩大10倍、100倍、1000倍是多少?
1.342,15,0.5,2.07。
3.填写下表。
根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)
根据商不变的性质填空,并说明理由。
(1)5628÷28=201;(2)56280÷280=();
(3)562800÷()=201;(4)562.8÷2.8=()。
(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201)
(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)
(二)探究算理归纳法则
1.学习例6:
一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截几段?
(1)学生审题列式:3.6÷0.4。
(2)揭示课题:
这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)
今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)
(3)探究算理。
①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?
(把除数转化成整数。)
怎样把除数转化成整数呢?
②学生试做:
板演学生做的结果,并由学生讲解:
解法1:把单位名称“米”转换成厘米来计算。
3.6米÷0.4米=36厘米÷4厘米=9(段)。
解法2:
答:可以截成9段。
讲算理:(为什么把被除数、除数分别扩大10倍?)
一、说教材
①认知目标:利用生活现实引导学生,理解小数的产生和意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……
②能力目标:通过比较、分析、综合、概括的能力,培养学生迁移类推的能力。
③情感目标:让学生在探究活动中,自我体验,感受成功,激发学习热情。
说本节教学重点、难点
理解小数的意义既是本节课的重点,又是本节课的难点,因此在重、难点的突破和分解上,主要是加强直观,抓住分数与小数的联系。充分利用迁移、类比进行教学。
说教学准备:
实物(如米尺、钱币等)、相关图片等
二、说教法、学法
1、教学理念
《数学课程标准》提出重视学生学习的全过程的全新理念,要充分发挥学生的主体性参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段启发引导每一个学生参与知识的形成过程。
1、让“兴趣”引领课堂,“兴趣是最好的老师”,因此教师要从学生的'兴趣出发,想学生所想,及学生所及;让他们对自己感兴趣的加以探索,使他感到探索的快乐;
2、说教法
理念支配行为,在上述理念的引领下,设计了如下教学方法,本节课坚持以“学生为主体、教师为主导、训练为主线”的原则,主要采用启发诱导的教学方法,引导学生亲历知识的观察、发现、迁移、应用的过程,使整个教学遵循了由生动直观到抽象思维的认识规律。由于小数的意义是小学阶段较为难理解的概念。因此,我又运用了讲授法、自学法、迁移法、练习法对启发诱导的教学方法进行了必要的补充,扬长避短,既尊重学生的主体地位,又重视教师的主体作用,力求达到最佳的教学效果。
一、说教材
《除数是整数的小数除法》这部分内容是在学生学习了整数除法、小数乘法等知识的基础上进行学习的。学好这部分知识对于今后学习除数是小数的除法及解决实际问题有着重要的作用。因此,它是本单元学习的基础。本节课的知识点:把除数是整数的小数除法转化成整数除法、小数点的位置确定、商是纯小数的整数部分用0补位,除到被除数的末位有余数添0继续除。其中小数点的位置确定是本节课的教学重点也是难点。
二、说学情分析
前面学习中学生掌握了整数除法的有关知识,为学习本节课的内容奠定了一定的基础。但是由于除数是小数的除法要通过商不变的性质转化成除数是整数的小数除法来计算,因此学好本节课尤为重要,一定要让学生弄清算理。所以被除数是整数,除到被除数的末位仍有余数,可以在余数后边添0继续除,如何确定好小数点的位置是本节课的教学难点。
三、说教学目标
根据自己对教材的理解和课标对教材的要求,联系学生已有的知识经验和认知规律,确定本节课的教学目标如下:
1、在解决问题的`过程中,理解除数是整数的小数除法的算理,学会计算方法,并能正确的进行小数除法计算。
2、在探索除数是整数的小数除法计算方法的过程中,感受转化的思想方法,发展学生初步的归纳、推理、概括能力。
3、通过解决实际问题,了解三峡工程的伟大,激发民族自豪感,增强学习数学的自觉性。
四、说教学思路:
根据教学目标,确定本节课的总体教学思路是:
(一)创设情境,提出问题
(二)自主探索,解决问题
(三)自主练习,应用拓展
(四)梳理知识,总结全课
五、说教学策略
为了更好的落实教学目标,在本节课的教学中,我将采取以下策略:
1、迁移转化的策略。
利用迁移,让学生明确转化原理,自己找到解决新知识的方法(补充一点,迁移包括知识的迁移和方法的迁移)通过学法的迁移以及知识的迁移培养学生的分析能力、类推能力和抽象概括能力。
2、问题引领策略。
引导学生自主探究、合作交流,培养他们运用已有的知识解决新问题的能力。
3、学习方式遵循自主性原则策略。
促进学生学习方式变革,是课程改革的主要任务之一。设计本课活动时我努力以学生为主体,引领他们运用自主学习、合作学习、探究学习等学习方式,使学生在自主学习中受益。
六、说教学过程
基于以上的认识,为了有效地突出重点,突破难点,顺利实现教学目标,我准备按以下几个环节进行教学。
(一)创设情境,提出问题
如何在教学中创设良好、轻松、愉快、和谐的情境,激发学生情感的共鸣,使学生进入良好的学习状态,是上好一节课的前提和条件。因此,上课伊始,我出示了三峡五级船闸的情境图,引导学生利用图中的有关信息,引导学生提出与本节课学习有关的数学问题,展开对新知识的学习。
为了促进知识的转移,教师有意把一组信息稍加改动:要求平均每天上升的水位数,平均每天上升水位3.28米,3天水位共上升了多少米?让学生回忆前面小数乘法的计算方法,将旧知识迁移到本节课的学习中来。为新知识的学习做铺垫。接着来做本节课提出的新问题。让学生明确学习目标,激发探究的兴趣。
(二)自主探索,解决问题
1、学习第一个红点问题,学习除数是整数的小数除法的基本方法
(1)结合情境中的问题,指名列算式
(2)寻求方法
①仔细观察这道除法算式与以前学过的除法算式做一比较,你发现了什么?
②自己试着算一算,可以利用以前学过的知识,可以小组内讨论以下,准备班内交流。
③班内交流
有的可能把单位改写成整数除法来做,有的根据被除数与除数和商之间的变化规律,把被除数扩大到原来的100倍,商再缩小到原来的100倍,也就是把被除数转化为整数用竖式计算,都要让学生说一说他们的想法,根据是什么?引导学生有根有据的来思考、解决问题。
④教师小结,掌握转化方法
结合学生的交流,教师适时进行点拨引导:被除数是小数,商是不是小数,小数点位置如何确定呢?把被除数看做整数,再根据整数除法的计算方法去做,根据被除数与除数和商之间的变化规律,把被除数扩大到原来的100倍,商再缩小的原来的100倍,从而发现商里的小数点正好和被除数里的小数点对齐。(重点引导学生从计数单位的角度理解小数点对齐的道理,一个9除以3得3,8表示8个十分之一,除以3商是2个十分之一,还剩2个,和百分位的4合起来是24个百分之一,除以3得8个百分之一,因此,小数点的位置在整数3的后面,与被除数的小数点对齐)
热门推荐