生物燃料行业前景范例(3篇)
时间:2024-06-13
时间:2024-06-13
关键词:生物质生物质能发电技术状况
中图分类号:TP273文献标识码:A文章编号:1672-3791(2014)05(b)-0120-01
1生物质概述
生物质,从广义上讲,是指通过光合作用而形成的各种有机体,包括了所有的动植物和微生物。生物质所蕴含的能量称为生物质能,是一种可再生能源,它直接或间接地来源于绿色植物的光合作用。
生物质能是地球上最古老的能源,一直以来是人类赖以生存的重要能源之一。在目前世界能源消耗中,生物质能占总能耗的14%,仅次于石油、煤和天然气,是世界第四大能源。在生物质能的利用过程中产生的二氧化碳可被等量的植物通过光合作用所吸收,从而实现二氧化碳的零排放和生物质能的循环利用,同时生物质能也是一种含硫量低的可再生能源,可以转化得到气态、液态和固态燃料,从而补充和替代化石燃料,减少对矿物能源的依赖。
目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以达到保护矿产资源,保障国家能源安全,实现二氧化碳减排,保持国家经济可持续发展的目的。
2生物质能的利用转化方式
目前,我们对生物质能的利用主要有生物质直接燃烧、气化、液化、固化和沼气技术等方式。
生物质直接燃烧是通过燃烧将化学能转化为热能,从而获取热量。直接燃烧可分为锅炉燃烧、炉灶燃烧、炉窑燃烧和炕连灶燃烧。
生物质气化是在一定的热力学条件下,将组成生物质的碳氢化合物转化为含一氧化碳和氢气等可燃气体的过程。气化过程不同于燃烧过程,一方面,燃烧过程中需供给充足的氧气,使原料充分燃烧,从而获取热量,而气化过程希望尽可能多地将能量保留在反应后得到的可燃气体中,所以只供给较少的氧气以满足热化学反应的需要;另一方面,燃烧后产生的是水蒸气和二氧化碳等不可再燃烧的烟气,而气化后的产物是含氢、一氧化碳和低分子烃类的可燃气体。
生物质液化是生物质热裂解技术的一部分。生物质热裂解是生物质在完全无氧供给的条件下热降解为可燃气体、液体生物油和固体生物质炭三种成分的过程。其中,反应产生的生物油可进一步分离,制成燃料油和化工原料。
在生物质能转化利用的各种途径中,利用生物质能转化后的热能来发电具有高效、环保等优势,在丹麦、瑞典、芬兰、荷兰以及巴西和印度等国家已得到广泛应用。近年来,随着能源和环保压力的增大,我国生物质能发电得到快速发展。
3生物质能发电技术
生物质发电的主要形式有:生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电、沼气发电和垃圾发电。
生物质直接燃烧发电与燃煤火力发电在原理上没有本质区别,主要区别体现在原料上,火力发电的原料是煤,而直接燃烧发电的原料主要是农林废弃物和秸秆。直接燃烧发电是把生物质原料送入适合生物质燃烧的特定蒸汽锅炉中,产生蒸汽,驱动蒸汽机转动从而带动发电机发电。直接燃烧发电对原料预处理技术、蒸汽锅炉的多种原料适用性、蒸汽锅炉的高效燃烧、蒸汽轮机的效率等方面都有较高要求。
生物质混合燃烧发电,顾名思义,即为生物质与煤混合作为燃料发电。混合燃烧的方式主要有两种:一种是将生物质原料直接送入燃煤锅炉,与煤共同燃烧;另一种是先将生物质原料在气化炉中气化生成可燃气体,再通入燃煤锅炉与煤共同燃烧,最后发电。可见,在混合燃烧方式中,对生物质原料的预处理过程显得尤为重要。一般情况下,通过改造现有的燃煤电厂就可以实现混合燃烧发电,只需在厂内增加储存和加工生物质燃料的设备和系统,同时对原有燃煤锅炉燃烧系统进行适当改造就可以了。
生物质气化发电是利用生物质气化技术产生的气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电的过程,可以分为内燃机发电、燃气轮机发电、燃气―蒸汽联合循环发电和燃料电池发电。生物质气化发电是生物质能最有效、最洁净的利用方式之一,它不仅能解决生物质难于燃用、分布分散等缺点,还能充分发挥燃气发电设备紧凑和污染小的优点。
沼气发电是一种新型的发电方式,也是沼气能量利用的一种有效形式。在沼气发电中,驱动发电机组发电的是沼气而非蒸汽。
垃圾发电包括垃圾焚烧发电和垃圾气化发电,简而言之,垃圾发电就是将垃圾直接作为燃料或者将垃圾制成可燃气体作为燃料来进行发电的方式。垃圾发电不仅能够回收利用垃圾中的能量,达到节约资源的目的,同时还解决了垃圾的处理问题。
我国的生物质能资源及其发电的状况
我国作为传统的农业大国,生物质资源非常丰富。我国农作物秸秆年产量约为6.5亿吨,2010年达到7.26亿吨;薪柴和林业废弃物资源中,可开发量每年达到6亿吨以上。近年来,高产的能源作物如甘薯、甜高粱、巨藻、绿玉树、木薯、芭蕉芋等,作为现代生物质能源已受到广泛关注,越来越多的科研机构、科技企业也不断参与到研究和发展生物质能资源的队伍中来,为生物质能源产业提供了可靠的资源保障。
我国的生物质发电以直接燃烧和气化发电为主要方式,原料主要采用农业、林业和工业废弃物等。我国生物质发电起步较晚,但也有近30年的历史,2006年我国生物质发电总装机容量约为2000MW,其中蔗渣发电约为1700MW;从2006年12月,我国第一个生物质直燃发电项目――国能单县生物发电厂正式投产开始,截止2008年8月,我国累计核准农林生物质发电项目130多个,总装机容量约3000MW,已有25个生物质直燃发电项目并网发电;2009年我国6MW及以上火电设备中生物质发电共占到0.37%,预计到2022年将建成总装机容量为20000MW的生物质发电项目,这样每年就可以节约7500万吨煤,而且减少大量的污染排放,此外,秸秆销售还可以给农民增加200~300亿元的收入。
4结语
从总体上看,我国生物质发电产业尚处于起步阶段,商业化程度较低,效益也不高,市场竞争力较弱。但是,近年来,国家对生物质能的开发利用逐渐重视,已连续在4个“五年计划”中将生物质能利用技术的研究与应用列为重点科技攻关项目,并先后制定了《可再生能源法》《可再生能源中长期发展规划》《可再生能源发展“十一五”规划》《可再生能源产业发展指导目录》和《生物产业发展“十一五”规划》,提出了生物质能发展的目标和任务,明确了相关扶持政策。有了这些政策和技术支持,相信生物质能的未来必定会生机勃勃。
参考文献
[1]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
一、多能互补的必要性
数据显示,我国60%左右农村人口仍然靠传统的秸杆和薪材等解决能源问题。全国农村每年直接消耗的各种能源相当于5.6亿吨标准煤,占全国总能耗的一半左右。发展新能源已成为改变农村能源使用结构,减少环境污染以及促进农村社会和谐发展的重要手段。然而,农村新能源到底该向何发展,发展中要解决哪些问题?
农村新能源主要包括沼气、太阳能、风力发电、微小水电、生物质能这几个方面。现阶段农村能源应该多种形式并存,不同的地区应根据自身的特点,确定适合当地经济发展水平的发展方向和发展重点。
在谈到农村新能源利用时,国务院发展研究中心研究员周宏春教授提出了“四位一体”和“五配套”的概念。“四位一体”,就是以太阳能为动力,以沼气为纽带,将种植业和养殖业结合起来,在全封闭条件下将沼气池、猪禽舍、厕所和日光温室等一体化。
“这样既解决农村的能源供应,改善农民卫生和生活环境,又可以减少农作物和蔬菜生长中农药化肥的使用量,提高食品品质和食品安全。”“五配套”模式,是建一个沼气池、一个果园、一个暖圈、一个蓄水窖和一个看营房,实行人厕、沼气、猪圈三结合的立体养殖和多种经营系统。
农村新能源代表着未来能源利用的方向,发展前景是很好的。但是,一些地区受技术水平制约,影响了农村新能源技术的推广使用。此外,随着农村养殖户的减少,沼气的替代能源问题也是需要考虑的。拿沼气发展来说,要跳出为沼气而建沼气池的单纯观念,将推广沼气与养殖、种植相结合,打造“养殖一沼气一种植”的模式,促进经济增长方式的转变,达到“三沼(气、渣、液)”综合利用,增加农民收入的目标。
总之,农村能源的发展应坚持“因地制宜,多能互补,综合利用,讲求效益”。“特别是要重视发展生物质能技术及其产业。”农村能源行业协会会长朱明强调说。具体来说,就是大力发展以秸秆、稻草等这些原料丰富、取材容易的生物质能,以及清洁的太阳能、风能、微水电等可再生能源,同时通过改革炉具等措施提高能源利用效率,以实现农村地区社会经济的可持续发展。
国家发展改革委副主任解振华表示,未来我国将有序推进以秸秆为主要原料的生物质能源。为缓解资源能源约束,发展循环经济,保护环境,应对气候变化,我国将大力推动农作物秸秆在农业领域的循环利用,积极发展以秸秆为原料的加工业,有序发展以秸秆为原料的生物质能源。
二、生物质产业和技术在各国的发展概况
生物质产业已受到了国际社会的广泛关注,许多国家制定了促进生物质产业发展的相关政策,并投入了大量的资金用于研究开发和推广应用。由于生物质能作为可再生能源仅次于煤炭、石油、天然气之后第四大能源,因此它在整个能源系统中占有重要的地位。近些年来,开发利用生物质能成为当前国内外广泛关注的重大课题,既涉及农业和农村经济发展,又关系到国家的能源安全。作为经济快速发展的中国,大力开发新型可再生能源已经是国家发展的重要战略,因此开发利用生物质能这一课题,有利于中国开拓新能源,并且能够缓解能源供需矛盾,也是解决“三农”问题,保证社会经济持续性发展的重要任务。
生物质能的利用分为两种:直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨(干重),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低。影响生态环境。
现代生物质产业是利用农作物及其残体、畜禽粪便、有机废弃物等可再生或循环的有机物质为原料,通过TA性加工转化生产化工产品、生物质燃料和生物能源以及生物质产品的一个格外引人关注的新兴产业。生物质既是可再生能源,也能生产出上千种的化工产品,且因其主要成分为碳水化合物,在生产及使用过程中与环境友好、又胜石油能源一筹。
目前我国的秸秆产出量已超过7亿吨,折合成标煤约为3.5亿吨,相当于7个神东煤田,全部利用可以减排8.5亿吨二氧化碳,相当于2007年全国二氧化碳排放量的1/8。随着国家明确提出到2015年秸秆综合利用率在80%的行动目标,我国秸秆资源化驶入快车道。以“秸秆能源”为代表的生物质能利用,在大力发展低碳经济的背景下,进入人们的视野。
目前。世界上较为成熟、可规模化开发利用的生物质技术主要集中在发电、固化成型燃料、沼气和液体燃料等方面。其中,生物质发电在发达国家已受到广泛重视,2005年全世界生物质发电的装机容量约达5000万千瓦,主要集中在北欧和美国。
生物质固化成型燃料在发达国家通常用来替代煤、燃气等作为民用燃料进行炊事、取暖,或用于区域供热和发电等。美国和欧洲一些国家的生物质成型燃料产品已进入商业化阶段,并相应开发了专用炉具;泰国、印度、越南、菲律宾等国也建成了一些生物质成型燃料生产厂,逐渐进入了规模化生产阶段。
沼气技术已经在有些国家普遍应用,欧洲和印度等地已建设了大量的户用沼气和大中型沼气工程。截至到2003年底,德国的大中型沼气工程总数已超过3000个,大多采用以畜禽粪便和秸秆为主要原料的厌氧消化工艺,机械化和自动化程度很高,生产出来的沼气主要用于发电。
生物液体燃料已实现规模化生产和应用。2005年,全世界生物燃料乙醇的总产量约为3000万吨,主要集中在巴西和美国;生物柴油总产量约220万吨,主要集中在德国。巴西以甘蔗为原料生产燃料乙醇,2005年的消费量为1200万吨,替代了当年汽油消费量的45%;美国主要利用耕地多、产量大的玉米为原料,同时积极发展纤维素制取燃料乙醇技术。欧盟对生物燃料也很重视。主要以大豆、油菜籽和回收的动植物废油等为原料生产柴油,2005年原欧盟15个成员国年产量约200万吨,占世界总产量的90%,其中德国年产量约为150万吨。
三、中国生物质产业的发展情况
中国农业生物质资源主要有农作物秸秆、畜禽粪便、农产品加工业副产品和能源作物等,资源丰富,产业发展潜力巨大。农业生物质具有资源种类多,分布范围广的特点,可转化为电力、燃气和液体燃料等多种商品位能源。
一直致力于生物质能研究的中国农业大学石元春院士认为,以秸秆为原料的现代能源是一个新兴产业。在当今发展清洁能源应对全球气候变暖的大形势下,秸秆迎来了一个发展现代能源产业的重大机遇。
根据最新资料和有关专家预测,我国秸秆目前的用途是:还田15%,饲料16%,工业原料3%,薪柴50%和露地焚烧16%。也就是说,目前秸秆中的66%,约6_7亿吨是用于能源的,具有替代2.4亿吨标煤和减排5.8亿吨二氧化碳的能力。
秸秆还田、秸秆饲料、工业原料和薪柴的利用属于传统产业提升,而以秸秆为原料的现代能源是一个新兴产业。据了解,秸秆能源在欧洲发展已经有30多年,特别是北欧的丹麦和瑞典,秸秆发电和颗粒燃料的技术成熟度和商业化程度最高。
1、农作物秸秆
2004年我国小麦、玉米、稻谷、棉花、大豆、薯类、油料等主要农作物产量达4.69亿吨,秸秆产量约为5.96亿吨。预计到2022年我国主要作物的秸秆总量将达到8亿吨左右。其中,约有50%左右农作物秸秆用作农村居民生活用能,由于采用传统的燃烧方式,效率低下;我国以甘蔗渣及稻壳发电为应用方式的生物质燃烧发电已得到初步应用,总装机容量达800兆瓦;固化成型燃料技术已初步形成了研究、开发和应用同步推进的良好势头;以秸秆过腹还田、粉碎还田和生产有机肥还田的技术已形成一定应用规模;以秸秆为主要原料生产生物质材料的技术研究已经起步。
目前我国秸秆能源化主要有直接作为农村生活燃料、秸秆气化、压块替代煤炭燃料以及秸秆发电这几个途径。其中秸秆气化、压块替代煤炭燃料和秸秆发电已经在不少地方进行了探索和推广。
发展秸秆颗料燃料产业前景广阔。中国现年消费煤炭26亿吨,其中中小锅炉用约10亿吨,是温室气体排放大户,如果采用秸秆颗粒燃料替代,减排效益不可低估。
在中国,截至2007年底,核准的生物质直燃发电项目约百个,装机容量2500兆瓦,建成投交并网发电的项目总装机容量400兆瓦以上。截至2008年底,中国国能生物质发电集团已有10个30兆瓦和7个12兆瓦的生物质电站正在运营,其中单县电站装机容量30兆瓦,年发电2.2亿千瓦时,可替代8.7万吨标煤的燃煤,减排18万吨二氧化碳,农民年新增收入6000万元和获得1000多个工作岗位。秸秆直燃发电的技术和设备已经可以全部自主与国产。
秸秆能源产业还将为农民带来增收的机会。以每吨秸秆农民可获250至300元算,全国4亿吨能源用秸秆就能获得1000亿至1200亿元。计划2012年达40亿元。此外,农村的能源中,由烟熏火燎烧薪柴到烧颗粒燃料,能效可以提高2~3倍,能源消费质量也将显著提高。
2、能源作物
能源作物指经专门种植,用以作为能源原料的草本和木本植物,如甜高粱、甘蔗、木薯以及油菜等。全国未利用土地总面积为24508.79万公顷,其中有6020.56万公顷土地资源可供能源作物的开发种植。另外,每年还有约900万公顷不同类型的季节性农闲地,可以种植能源作物。
3、生物液体燃料
我国已建设了以陈化粮为原料生产燃料乙醇的示范工程,分别在6省市进行示范,燃料乙醇年生产能力已达102万吨。在非粮食作物生产燃料乙醇方面也取得了一定进展,已培育出适应盐碱地种植的“醇甜系列”杂交甜高粱品种,并建成了产业化示范基地;培育并引进了多个优良木薯品种,平均亩产超过3吨;育成了一批能源甘蔗新品系和能、糖兼用型甘蔗品种,并筛选出了适合甘蔗清汁发酵的菌株和活性干酵母菌株。
此外,我国已对利用菜籽油、棉籽油、乌桕油、木油、茶油和地沟油等原料生产生物柴油的技术开展了研究,目前已有年产10万吨生物柴油的生产能力。我国在双低油菜与杂种优势利用的结合上已达到国际先进水平:在油菜、油葵等主要作物上已开发出高含油量品种,含油量高达51.6%;为了不与食用油和工业用油争原料,还开发了利用麻疯树果实、黄连木籽等能源作物生产生物柴油的技术,初步具备了商业化发展的条件;在利用季节性农闲地种植油菜生产生物柴油方面具有很大潜力。
四、生物质产业在中国未来的前景
以生物质为原料生产绿色能源和环境友好产品是人类实现可持续发展的必由之路,已成为世界科技领域的前沿。随着经济的发展和社会的进步,世界各国将会更加重视环境保护和全球气候变化问题,通过制定新的能源发展战略、法规和政策,进一步加快生物质产业的发展。
从目前生物质的资源状况和技术发展水平看,今后发展的主要趋势是发电、供热、生产液体燃料和生物质材料等。最近20多年来,生物质技术发展很快,产业规模、经济性和市场化程度逐年提高,预计在2010~2022年间,大多数生物质技术可形成较强的市场竞争力,在2022年以后将会有更快的发展,并逐步成为主导产业。
生物质产业正成为朝阳产业。在中国发展生物质产业具有深远的意义,不仅有利于解决资源、能源短缺和环境污染问题,更是解决好“三农问题”、加快社会主义新农村建设的战略举措。中国政府高度重视生物质产业的发展。已经研究制定了一系列促进生物质产业发展的相关政策。
加强生物质技术研究与工程集成,在固化成型、燃烧、沼气、燃料乙醇、生物质材料等方面的关键技术研究和装备开发方面取得突破性进展,创新一批具有自主知识产权的技术和产品;推广一批先进的生物质工程技术;建成一批生物质产业化示范工程;开展我国农业生物质资源现状调查,初步查清我国生物质资源的拥有量和分布情况,建立生物质资源数据库,促进我国农业生物质产业的形成与发展。
全面推进生物质工程科技创新,在生物质能源转化和材料利用等方面达到国际先进水平,部分技术达到国际领先水平,增强我国农业生物质产业的国际竞争力。提高生物质能和产品在能源消费中的比重,通过生物质利用解决农村生活燃料短缺问题;基本实现农业废弃物的资源化利用,促进我国生态环境保护和社会经济的可持续发展。
以科学发展观为统领,以国家目标和市场需求为导向,针对我国生物质产业发展的关键环节,选择秸秆综合利用、农业有机废弃物资源化和能源作物开发为切入点,通过技术研究、集成和重点突破,创新生物质工程技术,加快生物质科研成果转化,促进生物质产业化进程,为建设社会主义新农村、为提高国家能源保障能力、为全面实现资源节约型和环境友好型社会建设目标提供重要的科技和产业支撑。
我国政府及有关部门已连续在四个国家五年计划将生物质能利用技术的研究与应用列为重点科技攻关项目,开展了生物质能利用技术的研究与开发,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等,取得了多项优秀成果。《可再生能源法》的和实施表明中国政府已在法律上明确了可再生能源包括生物质能在现代能源中的地位,并在政策上给予了巨大优惠支持,“农林生物质工程”也已经成为“十一五”国家科技支撑计划重大项目。
对国际上生物质产业发展趋势和中国生物质产业发展现状,以及需要解决的紧迫问题与薄弱环节,选择秸秆综合利用、农业有机废弃物资源化和能源作物开发,增强我国农业生物质产业的竞争力,提高生物质能和在能源消费中的比重,通过生物质利用解决农村生活燃料短缺问题,基本实现农业废弃物的资源化利用,促进我国生态环境保护和社会经济的可持续发展。虽说生物质产业是世界发展和新兴的朝阳产业。但其当前成本与价格尚难与石油基产品竞争。
利用取之不尽,用之不竭的农林生物质生产材料和石油化工产品是绿色化学的重要研究方向。
随着全球石油、煤炭的大量开采,能源日益枯竭库,存量不断减少,能源短缺和随之而来的环境污染日渐引起人们的关注,并已成为制约我国经济社会又快又好发展的瓶颈。改善能源结构,利用现代科技开发生物质能源来缓解能源动力,减少污染物排放等问题刻不容缓。我国政府及有关部门对生物质能源利用也极为重视,已将“大力发展生物质能”列入国家“十二五”规划。
2、我国生物质能产业发展现状及前景
现阶段我国的生物质能应用主要集中在沼气利用,生物质直燃发电,工业替代燃料和交通运输燃料这四方面。
2.1沼气利用
近年来沼气利用在中国发展迅速,在中央投资的带动下,各地也加大投入,形成了户用沼气、小型沼气、大中型沼气共同发展的新格局。沼气开发利用现在不仅能解决农民的烧柴问题,更重要的是我国的沼气发展正从分散式农户经营向产业化方向转变。2008年山东民和牧业建成了一个利用鸡粪为原料的3MW热电联产沼气工程;2009年安阳贞元集团通过与丹麦技术资金伙伴合作,以养殖场,公共污粪和秸秆为原料在安阳建立了一个年产400万m3的车用气的沼气项目。从目前情况看,通过生物发酵产沼气的技术相当成熟,但是现阶段还存在沼气工程总体规模较小效益不高,产气不是很稳定,特别是在北方冬季产气明显不足,和沼气副产品市场需求不足等因素约束。
2.2生物质直燃发电
生物质直燃发电是最早采用的一种生物质开发利用方式,也是消耗量最大、最直接、最容易规模化和工业化的能源利用方式。早在2004年,山东单县、河北晋州和江苏如东这三个地方就开始了生物质直燃发电的试点示范,而2006年《可再生能源法》的施行更极大促进了生物质直燃发电行业的发展,年投资额增长率都在30%以上,到2010年我国生物质直燃发电量已达到550万千瓦。其中,我国生物质最大的企业国能生物发电集团有限公司在2010年投入运营和在建生物质发电项目近40个,总装机容量100万千瓦。到2013年,该公司规划生物质发电装机数量达到100台,装机容量达到300万千瓦。届时每年可为社会提供绿色清洁电力210亿千瓦时,年消耗农林剩余物可达3000万吨,每年可为农民增收约80亿元,每年可减排二氧化碳1500万吨以上。
生物质直燃发电技术比较成熟,而且它是增加农民收入、促进农民增收的直接载体,是实现工业反哺农业、加快农村经济发展的重要途径。需要注意的是生物质直燃发电还存在项目投资和运营成本较高,原料供应季节性强,需要政府补贴,受国家政策影响风险大等问题。
2.3工业替代燃料
生物质作为工业替代燃料主要包括生物质成型燃料、生物质可燃气和生物质裂解油。
生物质成型燃料一般以木块、木粉、木屑和秸秆等农业生物质废弃物为原料,用作工业锅炉的燃料。生物质成型燃料的技术研究开发始于20世纪80年代,早期主要集中在螺旋挤压成型机上,但存在成型筒及螺旋轴磨损严重,寿命较短,电耗大等缺点,导致综合成本较高,发展停滞不前。进入2000年以来,生物质成型技术得到明显的进展,成型设备的生产与应用已初步形成了一定规模。国家发改委规划到2010年,生物质成型燃料生产量可达100万t。生物质成型燃料多用在一些中小型的工业蒸汽锅炉、有机热载体锅炉和商业蒸汽锅炉方面。其中,珠海红塔仁恒纸业有限公司的“生物质固体成型燃料替代重油节能减排项目”项目是目前全国最大的生物质成型燃料节能减排项目,该项目2011年投入运行,以两台40t/h生物质成型燃料专用低压蒸汽锅炉,代替现有的六台燃油锅炉。
生物质可燃气较早使用在气化发电方面,一般是生物质气化净化后的燃气送给燃气轮机燃烧发电或者将净化后的燃气送入内燃机直接发电。生物质气化发电厂的规模一般为几十千瓦到十几兆瓦,与生物质直燃发电相比,它的规模较小,但它发电效率较高,投资成本较少,对原料的来源限制也较少。除了气化发电,生物质可燃气也越来越多地应用在工业替代燃料方面。深圳华美钢铁厂就是国内首家使用生物质能源的钢铁企业,它将原燃烧重油的两段式连续推钢加热炉改烧生物燃气,该项目在2009年初立项,并2010年5月正式投产至今运行正常,这是目前世界范围内建成运行的最大的工业生物燃气项目。
生物质裂解油是指将秸秆、木屑、甘蔗渣等农业废弃物通过高温快速加热分解为挥发性气体,再经冷却后提炼出的一种液体。生物质裂解油的热值一般为16~18MJ/kg,产油率可达70%,它可直接用作锅炉和窑炉的燃料,也可进一步加工转换成化工产品。我国在生物质裂解油这方面的研究起步较晚,但近年来发展较快。浙江大学,中国科技大学,山东理工大学等高校在生物质热解液化装置优化和油品的应用、分析和提纯方面都做了大量的研究工作,也取得了不错的成绩。在生物质裂解油的工业化应用过程中,2007年广州迪森公司在广州萝岗开发区成功建设了一套年产3000吨的生物油工业实验装置并一直连续运行。易能生物公司则使生物油迈入了工业应用的新阶段,从2007年在安徽合肥建立起第一套年产万吨的生物油装置以来,其2009年在山东滨洲和2011年在陕西铜川宜君科技工业园分别投产了第两套和第三套的年产万吨的生物油装置,这也标志着生物质裂解油的产业化进入了实质性阶段。生物质裂解油与生物柴油、燃料乙醇相比生产成本较低,但是它热值较低,又具有一定的酸性,需要对燃烧设备进行少量改造。生物质裂解油除能直接用于中低端燃料市场外,还可以进一步通过精炼工艺生产多种化学品,开发利用的市场潜力巨大,具有十分广阔的发展前景。
2.4交通运输燃料
生物能源作为交通运输燃料主要包括生物燃料乙醇和生物柴油。上世纪末,利用粮食相对过剩的条件,我国开始发展生物燃料乙醇。从目前的情况看,玉米、小麦等粮食类作物和甘蔗、木薯等经济类作物加工燃料乙醇的技术比较成熟,但基于对国家粮食安全的担心,和发展经济类作物会发生品种单一,种性退化较严重等问题,国家一直有意保持国内燃料乙醇的产量在一定的限制水平。
玉米和木薯加工燃料乙醇目前已处在比较尴尬的境地情况下,我国的企业和科研院校正加大力度地投入研发纤维素等新的燃料乙醇的生产。据了解,中国拥有发展纤维素乙醇的原料优势。纤维素广泛分布于农作物秸秆、皮壳当中,资源丰富且价格低廉。2008年吉林燃料乙醇有限公司和2009年安徽丰原生化公司都以玉米秸秆为原料分别建立了一套年产3000t和一套年产5000t燃料乙醇工业化示范装置。中粮集团与中石化、丹麦诺维信公司联手建造的中国规模最大的年产万吨的纤维素TU将于2011年正式投建。纤维素乙醇的生产代表了中国未来燃料乙醇的主流方向,目前需要做的是加快研发力度,突破技术瓶径,降低生产成本,加快商业化生产的速度。
生物柴油主要应用于运输业和海运业,是一种重要的交通运输燃料。生物柴油在国内的发展状况与燃料乙醇相似,用油类植物生产生物柴油的技术比较成熟,但是它受原料的制约严重。要发展大力生物柴油产业,必须要有稳定的原料来源。据了解,欧美国家主要以菜籽油、大豆油为原料生产生物柴油,但我国人多地少的国情决定了我国生物柴油产业不宜以食用油为原料,只能大力发展丘陵盐碱等非粮用地发展麻风树、黄连木等乔灌木油料作物。2010年底中海油在海南中海油东方化工城内的6万t生物柴油项目正式投产运行,其采用的是高压酯交换(SRCA)生物柴油生产工艺的装置,产品已在海南岛内的柴油零售批发网点推广使用,这是我国首个麻风树生物柴油产业化的示范项目。
近年来,利用微藻制备生物柴油受到了国内外的广泛关注,因为微藻繁衍能力高,生长周期短,可大量培养而不占用耕地,能有效解决原料来源不稳定的问题。美国在2007年推出“微型曼哈顿计划”,其宗旨就是向藻类要能源,目标是到2010年每天产出百万桶生物燃油,实现藻类产油的工业化。2008年10月英国碳基金公司也启动了目前世界上最大的藻类生物燃料项目,投入的2600~-英镑将用于发展相关技术和基础设施,该项目预计到2022年实现商业化。我国的科研人员也在政府和企业的大力支持下加紧研发这项新技术,希望能早日实现产业化。虽然现在较高的生产成本制约着微藻生物柴油产业的发展,但通过今后技术的不断改进,相信微藻生物柴油产业的前景是十分广阔的。
上一篇:如何进行阅读教学指导(6篇)
热门推荐