《乘法结合律》教学设计(整理8篇)
时间:2024-11-04
时间:2024-11-04
一、教学内容:
北师大版四年级上册数学第二单元p45-p46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5×225×425×8125×8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3×5)×4=60(个)
3×(5×4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3×50)×4=3×(5×4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的`。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(a×b)×c=a×(b×c)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:p46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4×5=5×412×10=10×12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:a×b=b×a
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25×17×413×8×128(25×125)×(8×4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
乘法结合律乘法交换律
教研课题:
学法有效性研究
教学目标:
1、经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。
2、能运用乘法交换律和结合律,对一些算式进行简便运算,体会数学方法的多样化,发展数感。
教学重点:
引导概括出乘法结合律,并运用乘法结合律进行简算。
教学难点:
乘法结合律的推导过程。
教学方法:
尝试教学法自主探究法
教学过程:
一、复习导入
1、25x6=70x5=14x100=
25x4=35x2=125x8=
2、师:看到同学们有这样快速准确的计算能力,老师真为你们高兴!
老师刚刚发现了两组比较有趣的算式,想和同学们一起分享。
二、探索发现
大屏幕出示两组算式
(2x4)x32x(4x3)
=8x3=2x12
=24=24
(2x4)x3=2x(4x3)
(7x4)x257x(4x25)
=24x25=7x100
=700=700
(7x4)x25=7x(4x25)
=24x25
=700
师:请大家观察这两组算式,再照样子仿写一组,然后小组内说说你们发现了什么?
小组交流汇报
(要求:学生能说出三个数相乘,先把前两个数相乘,再乘第三个数所得的积,与先把后两个数相乘,再乘每一个数所得的积是相等的。)
三、运用验证
师:数学来源于生活,生活中处处有数学。下面我们就找生活中的事例来解释自己所发现的'这个事例。
出示书中的两个例子
要求:
(1)先说清楚两个算式中每一步表示什么?
(2)再说两个算式特点是否符合我们发现的规律。
小组交流、汇报
师:任意三个数相乘,改变了运算顺序,积都不变吗?
先独立举例子,写练习本上。(大数用计算器)
再小组交流,板书展示一组。
四、表示对比
师:用语言文字来描述这个规律语句比较冗长、复杂,如果用字母表示就比较简洁了。用a、b、c三个字母表示这三个数,你能写出这个规律吗?
汇报
学生口述,板书
(axb)xc=ax(bxc)
看着字母表示的形式,完整地述说乘法结合律的意义。
板书课题乘法结合律
加法结合律和乘法结合律对比
五、简捷计算
直接出示125x9x8
生观察算示的特点,思考怎样算简便?运用了哪个运算律?
展示简便运算过程。
总结简便运算的步骤。
六、应用提升
1、说一说,下面算式分别运用了什么运算定律?
72+48=48+72()AxB=BxA()
a+(20+9)=(a+20)+9()
(△x○)xb=△x(○xb)()
2、教材55页2题、4题
七、总结
本节课你有哪些收获?
八、板书设计
乘法结合律
学生举例题
(axb)xc=ax(bxc)
教研课题:
学法有效性研究
教学目标:
1、经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。
2、能运用乘法交换律和结合律,对一些算式进行简便运算,体会数学方法的多样化,发展数感。
教学重点:
引导概括出乘法结合律,并运用乘法结合律进行简算。
教学难点:
乘法结合律的推导过程。
教学方法:
尝试教学法自主探究法
教学过程:
一、复习导入
1、25×6=70×5=14×100=
25×4=35×2=125×8=
2、师:看到同学们有这样快速准确的计算能力,老师真为你们高兴!
老师刚刚发现了两组比较有趣的算式,想和同学们一起分享。
二、探索发现
大屏幕出示两组算式
(2×4)×32×(4×3)
=8×3=2×12
=24=24
(2×4)×3=2×(4×3)
(7×4)×257×(4×25)
=24×25=7×100
=700=700
(7×4)×25=7×(4×25)
=24×25
=700
师:请大家观察这两组算式,再照样子仿写一组,然后小组内说说你们发现了什么?
小组交流汇报
(要求:学生能说出三个数相乘,先把前两个数相乘,再乘第三个数所得的积,与先把后两个数相乘,再乘每一个数所得的`积是相等的。)
三、运用验证
师:数学来源于生活,生活中处处有数学。下面我们就找生活中的事例来解释自己所发现的这个事例。
出示书中的两个例子
要求:(1)先说清楚两个算式中每一步表示什么?
(2)再说两个算式特点是否符合我们发现的规律。
小组交流、汇报
师:任意三个数相乘,改变了运算顺序,积都不变吗?
先独立举例子,写练习本上。(大数用计算器)
再小组交流,板书展示一组。
四、表示对比
师:用语言文字来描述这个规律语句比较冗长、复杂,如果用字母表示就比较简洁了。用a、b、c三个字母表示这三个数,你能写出这个规律吗?
汇报
学生口述,板书
(a×b)×c=a×(b×c)
看着字母表示的形式,完整地述说乘法结合律的意义。
板书课题乘法结合律
加法结合律和乘法结合律对比
五、简捷计算
直接出示125×9×8
生观察算示的特点,思考怎样算简便?运用了哪个运算律?
展示简便运算过程。
总结简便运算的步骤。
六、应用提升
1、说一说,下面算式分别运用了什么运算定律?
72+48=48+72()A×B=B×A()
a+(20+9)=(a+20)+9()
(△×○)×b=△×(○×b)()
2、教材55页2题、4题
七、总结
本节课你有哪些收获?
八、板书设计
乘法结合律
学生举例题
(a×b)×c=a×(b×c)
【教学内容】
西师版四年级下册数学教材第17~18页例1~2,练习四第1题。
【教学目标】
1.经历在计算中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重难点】
在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、复习旧知
1.以前学过的加法运算律有哪些?
加法交换律和加法结合律(学生回答)
2.说一说,下面的等式用了什么运算律?
80+a=a+80()20+30+40=20+(30+40)()
3.通过预习,你知道下面的等式用了什么运算律吗?
2×3=3×2()(2×3)×4=2×(3×4)()
引出课题:乘法运算律。
二、新课讲授
1、讲解
2×3=3×2
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:两个因数交换位置,积不变。
师引导学生得出乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
随堂练习:计算下面各题,用交换因数位置的方法进行验算。
34×1626×37
学生独立做,请两名学生上台板演。
2讲解
(2×3)×4=2×(3×4)
观察并思考:
(1)等号左边的`算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,
三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
三、课堂活动
1.练习四第1题:学生独立完成,全班交流,说出依据。
2.连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
四、课堂小结
今天这节课你都有哪些收获?还有什么问题?
五、作业
练习四第1、2题。
【教材分析】
本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。
【学情分析】
学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。
知识技能上:在学习本课前,学生已经知道:25×4=100、125×8=1000以及整十整百整千数乘法计算比较简便。
【学习目标】
知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。
过程与方法:经历数学探索过程,进一步体会探索的过程和方法。
情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。
【学习重难点】
探索、发现、理解、应用乘法结合律。
【教学策略】
创设情境,组织探索,引导自主学习。
【教学过程】
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a。b指的是什么?
(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的'交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×33×(5×4)
(设计意图:通过对算式的变换,巩固乘法交换律)
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×43×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4=3×(5×4)吗?
生思考回答。
(设计意图:通过对算式异同的比较,让学生自己发现规律,)
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
三、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×442×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的
知识通过练习加以巩固运用。)
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
板书:
探索与发现
乘法交换律乘法结合律
a×b﹦b×a(a×b)×c﹦a×(b×c)
5×4﹦4×5(3×5)×4=3×(5×4)
生举例略生举例略
教学目标:
1、使学生理解和掌握乘法结合律,会运用乘法结合律进行简便计算。
2、通过乘法结合律公式的推导教学,培养学生思维能力,及科学的学习方法。
教学重点:
引导学生概括出乘法结合律,并运用乘法结合律进行简算。
教学难点:
乘法结合律的推导过程是学习的难点。
设计意图:
一、公开课平常化。
公开课平常化,平时课公开化。公开课总是经过精心准备的,要不然听课的老师也会觉得没有价值。其实不然,不管成功与失败,它都会体现出我们的一种教学思想,教学理念。成功有着值得学习、推广的经验,而失败也会给我们带来学习、反思。特别是我们校级的教研课,最好就是暴露我们学生的学习问题,我们老师教时存在的问题。我就是怀着这样的初衷来上这节课的,无试教、上前没有向学生说明上哪一节内容,没有告诉学生有老师来听课。这样的课较为真实,也最能训练自己的基本功。当然镇级、市级的除外,今天的这节课,我自己觉得成功和失败各占50%,从教学任务的完成来看,可以说是完全失败的,敬请我们听课的老师提出宝贵的意见,以促进我的业务水平的提高。我们平时的课向公开课靠拢,公开课呢则向平时的课靠靠拢,只有这样才会提高我们的业务水平。
二、教学过程的设计思路
对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学的重点,也是难点。教学中,我是通过让学生游戏,在游戏中观察发现问题,提出猜想、进行验证、总结应用这样的一个思路进行的,应该说这样的教学思路是符合当今的新理念的,数学课程标准中强调:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。但是在验证当中的时间没掌握好,我自己也忘了,这也反映出教师的驾驭课堂、灵活调控的一种教育机智,而且在教学中也有颠三倒四的现象,本来是素材呈现后,让学生发现规律:三个数相乘,先把前面两个数相乘,再乘以第三个数,或者先把后两个数相乘,再乘以第一个数,它们的积不变。然后提出假设验证,但在教学中到最后才概括出这个规律来。
三、教学理念的.设计
体现学生的自主学习,合作交流,也就是当今最新的教学理念。数学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。独立思考是合作的前提,没有独立思考的合作交流是空的。在教学中有体现,进行猜想验证是,我要求是学生自己先写一个式子,再四人一小组进行交流,最后全班进行交流。在总结出乘法结合律的规律时,要求学生用自己的方法把这个规律记住,而交流呈现的方式也是多样的,也是在意料之中的,如果不出现,我也会呈现出来,以发挥学生的想象的。
四、两点反思
1、多媒体的运用,与制作。
本节课本来打算在教室进行,想想,这种课件也真是可有可无,只能说是一种电子彩板,不是电子黑板。另外,这次我采用的(powerpoint)进行制作,是第一次上课采用这个软件进行制作课件,花时两节课,效果怎样,有待大家评论。如果平时我们的课如果要用,我觉得我们老师完全有能力可以用这个软件进行简单的课件制作。
2、教学任务的完成与效果。
实施新课程理念,必然会花费学生很多练习的时间,会造成教学任务完不成的情况,有的老师会说还不如来个直接告诉学生这个规律,进行练习效果会好的多。我在课改论坛上也曾发表了这个主题,其中有位网友是这样说的:首先要肯定你有这种精神是非常可喜可贺的。我认为:在老教材我们最好先做一些尝试是可以的,不要所有的课文、内容都来运用这种新课程理念,因为我们还是要考试的,分是命根。而一年级如果老样子考是没有什么问题的。而在尝试新课程理念的同时,我们浪费几个课时又算得了什么呢?而这又是非常好的事。我想如果都用这样的理念去上,在考试还未进行改革的今天,我们很担心的一个问题就是:我的学生考试成绩会不会好?
教学目标:
1、掌握乘法交换律和乘法结合律。
2、运用乘法交换律验算乘法。
3、培养学生的分析、概括能力。
重点难点:
掌握乘法交换律和结合律。
教学准备:
多媒体课件。
教学过程:
一、谈话引入,激发兴趣。
1、出示第33页主题图。
2、师:植树节快到了,四年级同学去义务植树。
3、师:看图,植树要做哪些事情?
(挖坑、种树、抬水、浇树…)
4、师:这里也有许多数学问题,想学吗?
二、自主学习,合作探究。
1、教学例1、(多媒体出示教材第33页主题图)
师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?
生算,小组里交流。生汇报。
生甲:4x25=100(人)
生乙:25x4=100(人)
师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)
你能举出几个这样的例子吗?
例:7x5=5x720x10=10x20
师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?
生甲:乘法交换律。
师:你能用符号或字母表示它吗?
生乙:axb=bxa
师:乘法交换律,以前我们已用过它,在什么地方呢?
生丙:交换因数的'位置相乘,验算乘法。
师:对。试一试,好吗?
24x1615x17
指名两生板演,集体订正。
2、教学例2、(多媒体出示主题图)
①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?
生小组里交流,并汇报。
生甲:我先计算一共种树多少棵。
(25x5)x2
=125x2
=250(桶)
生乙:我先计算每组种树要浇水多少桶。
25x(5x2)
=25x10
=250(桶)
②师:那么(25x5)x2○25x(5x2)中间填上什么符号?
生:等号。
请你举出几个这样的例子。
生甲:(25x2)x2=25x(2x2)
生乙:(10x5)x5=10x(5x5)
生丙:10x(2x5)=(10x2)x5
③师:从上面的算式中,你发现了什么?
生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。
师:仿照加法的运算定律给它取个什么名字?
生乙:我叫它乘法结合律。
师:同意这种叫法吗?
师:你会用字母表示它吗?
生丙:(axb)xc=ax(bxc)
3、比一比,议一议。
师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。
生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。
师:你们真聪明,说得好极了。
三、巩固运用,深化提高。
1、教材第35页“做一做,第1题。
先计算,再运用乘法交换律进行验算。
2、教材第35页“做一做,第2题。
生独立做,并汇报。
生甲:2x24x5
=48x5
=240(元)
生乙:2x(24x5)
=2x120
=240(元)
师:他们做得对吗?你是怎样判断的?
四、总结提升。
这节课,你学会了什么?还有什么问题和大家共同讨论?
教学内容:
人教版小学数学四年级下册第24---25页例题,及做一做。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。
教学重点:
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点:
乘法结合律的推导过程。
教学用具:
课件
教学过程:
一、创设情境,生成问题
1、猜谜引入
猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”
生:(积极举手)纽扣。
师:你为什么会想到是纽扣?
生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。
出示:(1)根据运算定律在下面的()里填上适当的数。
48+___=a+___
61+28+72=61+(___+72)
718+(282+6)=(718+___)+___
(b+132)+768=___+(_____+768)
(2)下面各题怎样计算简便就怎样计算。
78+29+22。”79+145+21
师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)
师:怎么用字母如何表示加法交换律、结合律呢?
板书:a+b=b+aa+b+c=a+(b+c)
3、设置疑问,引入新课。
加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?
二、探索交流,解决问题。
活动一:探索乘法交换律
1、猜一猜:乘法可能有哪些运算定律?
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:……
2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
4、交流。
(1)生1:我们小组经过讨论认为乘法有交换律。比如:2×3=3×2,0×8=8×0等等。两个因数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个因数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5×8=32,也可以用8×5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。
师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。
生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300×
师:你能用自己的语言描述一下乘法交换律吗?
生:两个数相乘,交换因数的位置,积不变。
师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。
师:会用字母表示吗?板书:a×b=b×a。
5、师:学习乘法交换律有什么作用?
生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。
活动二:探索乘法结合律。
师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的号召。
1、出示例题2:
同桌讨论,你们是怎样计算的?
生1:先算出一共种了多少棵。
(25×5)×2=125×2=250(人)
生2:先算每组要浇多少桶水。
25×(5×2)=25×10=250(人)
2、全班交流
(1)师:我们来观察两位同学的做法,你有什么发现?
比较等号两边的算式,有什么相同点和不同点?
生1:结果相等。
生2:第二个算式中有括号,第一个算式中没有。
(2)猜想:是不是具备这种形式的两个算式结果都相等?这会不会是乘法中的`一个规律?
生1:是。
生2:可能是。
……
师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)
生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。
师:同学们觉得呢?---可以。
师:通过一组算式就能验证吗?
生:不能,要多举几个例子。
师:说得真好。下面就来验证一下。
(3)学生举
比较这几组等式,你发现了什么规律,把你的发现与同桌交流。
师:能用自己的语言描述一下你发现的规律吗?
结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)
师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?
(4)师:怎样用字母表示乘法结合律?
板书:(a×b)×c=a×(b×c)
(5)师:有什么好方法帮助记忆?
生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。
师:这个记忆方法确实很好,我们大家一起来试一试。三、巩固应用,内化提高。
师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。
1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。
15×16=16×()
(60×25)×=60×(×8)
125×(8×)=(125×)×14
3×4×8×5=(3×4)×(×)
25×7×4=×(×4)
同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。
2、计算23×15×25×37×2
放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。
通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。
师:运用了乘法的运算律,计算时你有什么体会?
3、思考题:用简便方法计算。
36×25125×32
例。6=6×300
学生的方法很多:36×25=25×4×9=5×6×5×6=、、、、、、
四、回顾整理,反思提升
通过这节课的学习,你有什么收获想和大家分享一下呢?
板书设计:
乘法运算律
乘法交换律乘法结合律
3×5=5×3(25×5)×2=25×(5×2)
7×8=8×7(12×5)×4=12×(5×4)
9×8=8×9(35×8)×7=35×(8×7)
a×b=a×b(a×b)×c=a×(b×c)
上一篇:小学英语教学教案(整理11篇)
热门推荐