遗传学进展范例(4篇)

时间:2024-12-20

遗传学进展范文篇1

摘要疟原虫产生抗药性是疟疾防治中遇到的主要难题之一。抗叶酸类抗疟药的抗药性机制已基本搞清,与其作用靶酶二氢叶酸还原酶或二氢蝶酸合成酶基因点突变相关。喹啉类药物抗性影响因子尚不完全清楚。恶性疟原虫5号染色体上的多药耐药基因1及7号染色体上的cg2基因可能是抗性相关基因,但二者都不能完全解释抗性,尚待深入研究。

疟疾的流行至今仍然十分广泛,遍及全球90多个国家和地区,20亿人面临感染疟疾的危险。据统计,全球每年有3亿~5亿疟疾病例,导致150万~270万人死亡,其中100万是居住在非洲的5岁以下儿童[1]。人类在长期实践过程中筛选了大量防治疟疾的药物,但是,自从50年代末在东南亚和南美洲分别发现恶性疟原虫对氯喹产生抗药性以后,抗氯喹恶性疟迅速扩散蔓延,抗药性程度不断增加,并且从单药抗药性向多药抗药性发展。我国的海南、云南和广西等省、自治区也有抗药性疟疾的流行。目前,疟原虫对几乎每一种抗疟药都产生了抗性,疟疾防治形势非常严峻,迫切要求我们尽快搞清抗药性产生的机制,以便采取措施防止或逆转抗药性的发生并指导新药研究。近年来,分子生物学技术的发展及学科渗透大大推动了疟原虫抗药性机制的遗传学研究,本文就抗叶酸制剂及喹啉类药物抗性的分子机制作一综述。

1抗叶酸制剂抗性的分子机制

1.1二氢叶酸还原酶(DHFR)基因

乙胺嘧啶和环氯胍都是二氢叶酸还原酶抑制剂。研究表明,恶性疟原虫对两药产生抗药性都与DHFR基因点突变相关,但二者存在差异[2,3]。迄今为止,共报道了6个DHFR基因编码区变异:108位SerAsn或Thr,51位AsnIle,59位CysArg,16位AlaVal,164位IleLeu。单一点突变所致DHFR108位Ser变异成Asn即可产生乙胺嘧啶抗性,但对环氯胍的反应性仅稍有降低。对乙胺嘧啶产生高度抗性则需其他位点突变共存,包括51位AsnIle和(或)59位CysArg。而与环氯胍抗性相关的变异是DHFR108位SerThr伴随16位AlaVal,同样,该抗性株对乙胺嘧啶的敏感性变化不大。

另外,在对乙胺嘧啶和环氯胍交叉耐药的恶性疟原虫中发现存在多个位点变异:DHFR164位IleLeu,108位SerAsn,59位CysArg和(或)51位AsnIle。由于仅包含Asn-108和Arg-59变异的原虫分离物不具有环氯胍抗性,因此,认为Leu-164变异在疟原虫对两药产生交叉抗性的机制中起重要作用[3]。

1.2二氢蝶酸合成酶(DHPS)基因

磺胺类药是二氢蝶酸合成酶抑制剂。研究发现,正是由于磺胺类药作用的靶酶DHPS基因点突变,使得酶活性中心结构域形状改变,因而降低了对药物的敏感性。体外低叶酸条件下实验表明[4],与磺胺多辛易感性降低相关的DHPS氨基酸变异主要包括581位AlaGly,436位SerPhe伴随613位AlaThr/Ser,以及436位SerAla,437位AlaGly。

磺胺多辛通常与乙胺嘧啶合用于治疗恶性疟疾。对两药联用的体外研究揭示,疟原虫对乙胺嘧啶的易感性决定着两药协同作用的效果[5]。体内研究也发现[6],前面所述的DHFR变异类型均存在并与抗性程度相关,而DHPS基因突变与抗性的发生没有明显相关性,仅在抗性程度较高的玻利维亚地区可见Gly-581高度流行,Gly-437和Glu-540的发生与用乙胺嘧啶-磺胺多辛治疗失败率相当,这可能由于体外研究中叶酸和PABA水平不同于体内。另一种解释是Ala-436的变异可能仅在低度抗性时出现,且不与高度抗性时的变异Gly-437,Glu-540和Gly-581共存。因此推测,DHPS变异在临床乙胺嘧啶-磺胺多辛抗性的产生中不起主导作用。

我们能够肯定,体内乙胺嘧啶-磺胺多辛抗性与DHFR基因突变相关,然而在抗性疟流行区治疗失败率并不像突变发生率那样高,提示体外研究发现的三种变异Asn-108,Ile-51和Arg-59不能完全解释体内高度抗性。在玻利维亚的高度抗性病例中曾发现Leu-164及另外两个新的变异Arg-50和插入30-31位间的玻利维亚重复区高度流行,提示这些变异可能是在抗性发展的较高时期产生的,关系到治疗的成败。据此Plowe等[6]提出假设,体内乙胺嘧啶-磺胺多辛抗性程度分级RⅠ,RⅡ,RⅢ正是基于DHFR和DHPS基因突变的不断积累。由于现实中恶性疟原虫感染的复杂性及宿主免疫与叶酸水平的影响,事实上所检测到的抗性突变往往是交叉重叠的。

总之,关于抗叶酸制剂的抗药性分子机制已基本搞清。因此,我们可以根据特有的突变类型,运用分子生物学的方法,进行大规模的流行病学研究,这对于鉴定某一疟疾流行区的药物敏感性,从而指导临床用药具有重要意义;同时也可指导新药设计及临床药物联用,以最大限度地减少药物抗性的发生。

2喹啉类药物抗性的分子机制

氯喹曾经是使用最广泛的抗疟药,由于抗性的发展及传播,在大部分地区已不再具有以往的效力。影响抗性机理最终阐明的重要因素是喹啉类药物作用机制还不十分清楚。不同地区的研究者报道关于氯喹抗性的一个共同特征是:抗氯喹虫株较敏感性虫株药物聚集水平降低了。因此,氯喹的转运和聚集不仅对其发挥抗疟活性是必需的,而且与抗性表型密切相关,提示喹啉类药物抗性产生可能与其作用方式没有直接关系,这与抗叶酸制剂不同。

2.1恶性疟原虫多药耐药基因(pfmdr1和pfmdr2)

研究发现,维拉帕米(一种钙通道阻滞剂)可逆转氯喹抗药性,促使人们考虑氯喹抗性可能与哺乳动物肿瘤细胞多药抗药性(MDR)表型相似[7]。研究表明,肿瘤细胞产生MDR是由于一种ATP依赖性的、与药物外排相关的蛋白过量表达所致,称为P-糖蛋白,它定位于细胞表面,与许多不同类型的化合物有亲合力[8]。在此基础上,Krogstad等[9]发现抗氯喹株原虫较敏感株排出氯喹的速率快40~50倍,且这种排出是能量依赖性的,并可被能量缺乏及ATP阻断剂抑制。但是也有研究显示,抗氯喹株与敏感株药物外排率相等[10];二者药物聚集量的差别是由于最初的药物摄入速率不同所致[11]。

哺乳动物MDR表型通常伴有mdr基因的扩增,导致其产物P-糖蛋白表达增加[8]。对恶性疟原虫基因的研究表明也存在mdr基因同系物,以pfmdr1和pfmdr2为主[12,13]。目前尚无证据表明pfmdr2及其表达产物与氯喹抗性有关,而有相当多的研究认为pfmdr1与抗药性机制相关。

Pfmdr1编码一个相对分子质量约162的蛋白,称为P-糖蛋白同系物1(Pgh1)。早期研究表明,在一些抗氯喹株中存在pfmdr1扩增[12,13]。免疫荧光及免疫电镜技术观察pfmdr1蛋白产物,发现Pgh1在红内期表达,主要定位于食物泡膜上,这与它可能充当氯喹转运蛋白的角色一致,但是定量分析不能确认Pgh1过表达与抗药性相关[14]。

Foote等[15]对pfmdr1基因3′多态性及等位基因变异分析表明,pfmdr1突变与氯喹抗性表型相关,并提出存在两种类型抗性相关等位基因,一种可致单一氨基酸变异86位AsnTyr,为K1型;另一种则导致三种氨基酸变异,1034位SerCys、1042位AsnAsp和1246位AspTry,为7G8型。这可能分别代表着最早在东南亚和南美洲出现的氯喹抗性类型。以此为基础,运用单盲法研究,曾正确地预测了36份样品中的34份的药物易感性。Adagu等[16]的研究也表明86位Tyr突变与氯喹抗性相关。但是,同时有些研究不能得到相同的结果。这提示可能pfmdr1不是唯一的控制抗性的基因。

氯喹抗性与pfmdr1的关系尚不明确,从选自氯喹抗性亲代的甲氟喹抗性株中却发现有pfmdr1的扩增,并且虫株对甲氟喹抗性增加的同时对氯喹的易感性增加了[12]。Barnes等[17]的研究表明,随着原虫对氯喹抗性的增加,pfmdr1基因拷贝数减少,甲氟喹易感性增加,这无疑加强了pfmdr1扩增与甲氟喹抗性的关联。因此推测pfmdr1扩增可能与氯喹高度抗性是不相容的,Pgh1的功能可能是促进对氯喹的易感性。

将pfmdr1基因转染于异源表达系统中国仓鼠卵巢细胞(CHO),使其表达恶性疟原虫Pgh1,发现Pgh1表达伴随有能量依赖性的药物摄入增加[18],而且Pgh1就定位于转染的CHO细胞溶酶体上,经测定,发现转染细胞溶酶体内pH值有所下降,认为氯喹聚集增加可能是溶酶体酸化的结果,推测pfmdr1可能编码一种液泡氯化物通道。当CHO细胞被携带有7G8型1034和1042位突变的pfmdr1基因转染时,则发现氯喹易感性丧失,细胞聚集药物及酸化溶酶体的能力减弱,这就从某种意义上证实了关于Pgh1促进氯喹易感性的推测。但这仍不足以解释抗性。Ritchie等[19]发现源自氯喹抗性亲代的卤泛曲林抗株表现对卤泛曲林、甲氟喹和奎宁敏感性降低而对氯喹敏感性增强,却未检测到任何pfmdr1基因序列或拷贝数及Pgh1表达的变化。

很明显,关于pfmdr1与喹啉类药物抗性的关系仍有很大疑问,可能抗性的发生有一定的地理学基础,而寻找某个单一的基因来解释抗性本身过于简单化,氯喹抗性发生的缓慢及复杂性也不支持单基因决定抗性的假设。

2.2cg1基因和cg2基因

早在90年代初,Wellems等[20]从一次遗传杂交试验中发现疟原虫抗氯喹表型以孟德尔方式遗传,亲代pfmdr1基因不与子代药物反应表型分离。对杂交子代进一步观察发现氯喹抗性表型与恶性疟原虫7号染色体上约400kb的区域相关而不是5号染色体的pfmdr1基因。这一区域包含80~100个基因,对该区域进行大量的分析研究后[21],确定36kb的片段与氯喹抗性表型相关,并鉴定了2个候选基因:cg1和cg2。对采自东南亚和非洲大量的抗氯喹株检测结果表明,cg1尤其是cg2基因多态性与氯喹抗性显著相关,但不排除cg1与cg2协同参与了抗性。不过,对南美洲抗氯喹株的检测没有得到同样结论。运用免疫电镜技术观察到CG2蛋白定位于原虫周围液泡、食物泡及囊泡结构形成的外膜复合物上,暗示CG2可能是一种转运蛋白。然而检索序列数据库未发现CG2与任何已知离子通道或转运蛋白同源。

Sanchez等[22]认为在氯喹抗性过程中,有转运分子在起作用,一个Na+/H+交换蛋白(NHE)可能调控着氯喹的摄取。已证实恶性疟原虫以一种热敏感的可饱和的方式主动摄取氯喹,并可被高等真核生物NHE的特异性抑制剂氨氯吡咪竞争性抑制。运用与Su等同样的亲代子代克隆研究发现,氯喹抗性表型与恶性疟原虫NHE的生理生化特征有遗传学关联。因此,Sanchez等[23]推测恶性疟原虫cg2基因可能编码Na+/H+交换蛋白,他们认为两者可能有共同的结构和功能,比如氨氯吡咪结合位点、与NHE离子交换区同源等。但是,Wellems等[24]详细分析了CG2蛋白序列,不支持上述观点。首先,尽管CG2序列有一些疏水性氨基酸,却没有整合膜蛋白的典型特征,疏水性与跨膜区域分析表明,NHE与CG2有显著差别。其次,CG2与NHE离子交换区域不具有同源性,Sanchez等提出的CG2有氨氯吡咪结合位点也没有可靠的根据。此外,如果CG2是一种整合膜Na+/H+交换蛋白,应当定位于胞浆膜上,而不是原虫周围液泡及食物泡上。

Wellems等[24]认为CG2不是转运蛋白,而是通过直接影响氯喹摄入、血红蛋白消化、血红素聚合或血红素与氯喹复合物的毒性作用来调控原虫对氯喹的易感性,但需要进一步的生化实验及蛋白功能研究才能确定其确切机制。

总之,关于喹啉类药物抗性机制已提出了多种理论,虽然每种理论都不能完全解释抗性,但是这些研究对于搞清抗性机制有着重要的意义。随着现代药理学、生物化学及分子生物学的发展,我们有理由相信在不久的将来能够阐明这一问题。

参考文献

[1]KondrachineaV,TriggPI.Globaloverviewofmalaria[J].IndianJMedRes,1997,106(8):39.

[2]PetersonDS,WallikerD,WellemsTE.Evidencethatapointmutationindihydrofolatereductase-thymidylatesynthaseconfersresistancetopyrimethamineinP.falciparummalaria[J].ProcNatlAcadSciUSA,1988,85(23):9114.

[3]PetersonDS,MilhousWK,WellemsTE.MolecularbasisofdifferentialresistancetocycloguanilandpyrimethamineinP.falciparummalaria[J].ProcnatlAcadSciUSA,1990,87(8):3018.

[4]TrigliaT,CowmanAF.PrimarystructureandexpressionofthedihydropteroatesynthasegeneofP.falciparum[J].ProcNatlAcadSciUSA,1994,91(15):7149.

[5]WatkinsWM,MberuEK,WinstanleyPA,etal.TheefficacyofantifolateantimalarialcombinationsinAfrica:apredictivemodelbasedonpharmacodynamicandpharmacokineticanalyses[J].ParasitolToday,1997,91(4):456.

[6]PloweCV,CorteseJF,DjimdeA,etal.MutationsinPlasmodiumfalciparumdihydrofolatereductaseanddihydropteroatesynthaseandepidemiologicpatternsofpyrimethamine-sulfadoxineuseandresistance[J].JinfectDis,1997,176(6):1590.

[7]MartinSK,OduolaAMJ,MilhousWK.ReversalofchloroquineresistanceinPlasmodiumfalciparumbyverapamil.Science,1987,235(4791):899.

[8]RiordanJR,DeucharsK,KartnerN,etal.AmplificationofP-glycoproteingenesinmultidrug-resistantmammaliancelllines[J].Nature,1985,316(6031):817.

[9]KrogstadDJ,GluzmanIY,KyleDE,etal.Effluxofchloroquinefromplasmodiumfalciparum:mechanismofchloroquineresistance[J].Science,1987,27(11):1283.

[10]

BrayPG,HowellsRE,RitchieGY,etal.Rapidchloroquineeffluxphenotypeinbothchloroquine-sensitiveandchloroquine-resistantplasmodiumfalciparum[J].BiochemPharmacol,1992,44(7):1317.

[11]BrayPG,HawleySR,WardSA.4-Aminoquinolineresistanceinplasmodiumfalciparum:insightsfromthestudyofamodiaquineuptake[J].Molpharmacol,1996,50(6):1551.

[12]WilsonCM,SerranoAE,WasleyA,etal.AmplificationofagenerelatedtomammalianmdrgenesindrugresistantP.falciparum[J].Science,1989,244(4909):1184.

[13]FooteSJ,ThompsonJK,CowmanAF,etal.AmplificationofthemultidrugresistancegeneinsomechloroquineresistantisolatesofP.falciparum[J].cell,1989,57(6):921.

[14]CowmanAF,KarczS,GalatisD,etal.AP-glycoproteinhomologueofp.falciparumislocalizedonthedigestivevacuole[J].JCellBiol,1991,113(5):1033.

[15]FooteSJ,KyleDE,MartinRK,etal.SeveralallelesofthemultidrugresistancegenearecloselylinkedtochloroquineresistanceinP.falciparum.nature,1990,345(6272):255.

[16]AdaguIS,WarhurstDC,CarucciDJ,etal.Pfmdr1mutationsandchloroquine-resistanceinPlasmodiumfalciparumisolatesfromZaire,Nigeria.transRSocTropMedHyg,1995,89(2):132.

[17]BarnesDA,FooteSJ,GalatisD,etal.Selectionforhigh-levelchloroquineresistanceresultsindeamplificationofthepfmdr1geneandincreasedsensitivitytomefloquineinPlasmodiumfalciparum[J].EMBOJ,1992,11(8):3067.

[18]vanEsHHG,KarczS,ChuF,etal.Expressionoftheplasmodialpfmdr1geneinmammaliancellsisassociatedwithincreasedsusceptibilitytochloroquine[J].MolCellBiol,1994,14(4):2419.

[19]RitchieGY,MungthinM,GreenJE,etal.InvitroselectionofhalofantrineresistanceinP.falciparumisnotcorrelatedwithamplificationofpfmdr1oroverexpressionofPgh1[J].MolBiochemParasitol,1996,83(1):35.

[20]

WellemsTE,Walker-JonahA,PantonLJ.GeneticmappingofthechloroquineresistancelocusonP.falciparumchromosome7[J].ProcNatlacadSciUSA,1991,88(8):3382.

[21]SuX,KirkmanLA,FujiokaH,etal.Complexpolymorphismsinan~300kDaproteinarelinkedtochloroquine-resistantP.falciparuminSoutheastAsiaandAfrica[J].Cell,1997,91(5):593.

[22]SanchezCP,WunschS,LanzerM.IdentificationofachloroquineimporterinPlasmodiumfalciparum[J].JBiolChem,1997,272(5):2652.

遗传学进展范文

1河北省非物质文化遗产概述

河北省有着丰富的非物质文化遗产,这些都是通过劳动人民长期对生命的探索和通过在生活实践中感悟而创造出来的,它是我省各族人民辛勤劳动的智慧结晶。非物质文化遗产的传承主要包括口头传承、传统表演艺术、民俗活动和礼仪与节庆的各种传统文化表现形式。河北省非物质文化遗产有着极其丰富的文化内涵,它的历史文化是丰富而珍贵的,它包含着劳动人民的精神、情感、品德、个性、亲和力和凝聚力,是一个地区地域特色的重要表现和载体。非物质文化遗产是一个国家文化艺术发展的见证,具有精神文明、文化历史传承发展的重要价值。因此对我省非物质文化遗产进行合理的保护以及合理的利用,对践行科学发展观、增强社会经济效益、促进社会和谐有着重要意义。

2河北省非物质文化遗产传承保护现状

河北省的非物质文化遗产文化内涵深厚且有着较长的历史,拥有很多传统的民间文化遗产,被列入河北省第一批省级非物质文化遗产名单中的项目多达130项。但多数文化遗产的资源在延续过程中不断萎缩甚至消失。因此,研究民族民间文化遗产的形成、特征以及延续和保护,成为一个刻不容缓的问题,如果充分利用起来就可在保护的基础上促进文化、历史、艺术的发展。

在河北省舞蹈类非物质文化遗产中,传承与发展多半以举办弘扬非物质文化遗产为主题的演出,举办举行各种民间音乐、舞蹈、绝技的表演,如河北鼓吹乐、常山战鼓、井陉拉花、唐山皮影、乐亭大鼓等。这些曲艺舞蹈类的非物质文化遗产举办类似形式的表演、在庙会、集会、祭祀、重大节庆时表演,这些表演形式可以在民众中宣传保护遗产的意识,促成文化产业的正常发展。但也不可否认的是,这些非物质文化遗产的传人稀少,有些甚至后继无人,难以对此项文化进行行之有效的传承。为了可以使河北省的历史文化可以继承发展,保护这些非物质文化遗产,需要找出更加科学的方法,保护非物质文化遗产的传承。

3非物质文化遗产高校传承的重要性

随着保护非物质文化遗产宣传工作的深入开展,越来越多的人开始关注非遗的传承与保护。这其中,将以前非物质文化遗产项目引入大学,让高校肩负起传承与保护非物质文化遗产的重任,成为传承与保护非遗的一条有效途。因此,增强对河北省“非遗”的认识,扩大我省高校师生对“非遗”了解的知识面,同时增强保护遗产的意识及责任感,为“非遗”对文化事业的支撑与发展打好基础,进一步巩固提高“非遗”在我省的社会地位。

这些项目进入高校,不断得到了良好的传承与保护,而且还丰富了校园文化的内涵,拓展了大学生业余文化生活,提高了大学生的身心素质,使学生们深入地了解河北文化,从而更加热爱河北,激发大学生热爱祖国,热爱家乡的热情。从非遗的保护与传承来看大学生应承担起抢救和研究非物质文化遗产的历史使命,把这一光荣而艰巨的历史任务融入自己的教学和科研,使其成为有机的组成部。

4河北省舞蹈类“非遗”在校园传承的问题

首先,因为专业舞蹈教学场地制约性较大,导致在没有开设艺术类学科的高校学生没有排练厅上课。其次,舞蹈类非物质文化遗产传人稀少且大部分在河北山区,师资力量达不到高校开设课程的需求。再次,因为在高校对非物质文化遗产的宣传较少,导致大学生对保护非物质文化遗产热情有余,实践不足。对一些非遗项目如“昌黎大秧歌”“永年太极拳”“井陉拉花”等我省“非遗”项目约六成大学生表示不了解和不熟悉,即使在非遗项目开展较好的高校被调查学生的百分之四十表示对这些项目不感兴趣。因此在高校进行舞蹈类“非遗”的传承与保护形势不容乐观。

5河北省舞蹈类“非遗”舞蹈教育传承形式

5.1《河北省“非遗”民族民间舞蹈教法》

通过《河北省“非遗”民族民间舞蹈教法》的课程设置,积累进入课堂传承的不同的非遗舞蹈项目的资料,量身打造具有河北鲜明特色的非物质文化遗产舞蹈教材,同时将《河北省“非遗”民族民间舞蹈教法》课程建设成具有鲜明地域特色的课程。有针对性地遵循因地制宜原则,对高校中开设艺术类专业舞蹈学科的同学进行科学系统的教学,以课堂的形式传承保护舞蹈类非物质文化遗产。

遗传学进展范文篇3

提要惊恐障碍病因可能与经典神经递质GABA、5-HT、DA、Ach及神经肽CCK等功能异常有关,本文对近有关惊恐障碍患者的GABA、5-HT、DA、Ach及CCK受体基因的研究作一综述。

关键词惊恐障碍;基因

惊恐障碍是一种反复发作的严重焦虑。目前解释其病因机制的假说很多,神经生化方面的假说包括经典神经递质类GABA、5-HT、DA和Ach等功能异常假说,以及神经肽类CCK与DA平衡失调假说等。遗传因素在惊恐障碍的发生中也可能起一定的作用,因为在对人灶族系的调查中发现,焦虑症患者的近亲中,本病发生率为15%,是一般居民的3倍[1];对双生子的调查中发现,单卵双生子的同病率为50%,焦虑素质为65%,而双卵双生子同病率仅4%,焦虑素质仅13%[1];这些研究表明惊恐障碍具有明显的遗传倾向,其病因至少部分是出在基因上。

随着分子遗传学技术的发展,近年在基因水平对惊恐障碍病因的探讨进行了不少研究。

一、惊恐障碍与GABAA受体基因

γ-氨基丁酸(GABA)受体分为GABAA和GABAB两种亚型。GABAA亚型受体与氯通值、安定受体组成一个复合体,该复合体是由α、β、γ、δ亚基组成的一种四聚体,门控着氯通值。α亚基上有安定结合点;β亚基上有GABA结合点;γ亚基本身不能和苯二氮卓类或GABA结合,但它是寡聚受体与苯二氮卓类高亲和时所必需的;δ亚基上则没有结合位点,其功能尚不清。α、β、γ、δ亚基的肽链都是4次跨越细胞膜的结构[2,3]。

GABAA受体一氯通道一安定受体复合体在抗焦虑中起着重要的作用;GABAA受体与氯通道偶联,门控着氯通道,GABAA受体激动剂(如GABA)可激活GABAA受体,打开氯通道,使细胞外CI-内流、氯导增加,引起突触后膜超极化,产生对神经元的抑制效应,因此呆产生抗焦虑作用;苯二氮类抗焦虑药(如安定等)作用于安定受体,可使GABAA受体上调,进而使GABAA受体对GABA的亲和性增加、与GABA的结合增多,从而使GABAA受体打开氯通道的频率增加,增强GABA的突触后抑制效应,呈现抗焦虑效果;巴比妥类药直接作用于氯通道,使氯通道打开的时间延长,也具有抗焦虑作用。总之,GABAA受体激动剂、安定受体激动剂和巴比妥类药物,由于它们分别作用于GABAA受体、安定受体和氯通道,均具有抗焦虑作用。反之,致焦肽(diazepambindinginhibitor,DBI)是一种内源性的安定结合抑制剂,可使GABAA受体下调,使GABAA与配基的结合减少,可引起焦虑;β-carbolin与安定受体结合,减弱GABA的作用,也可引起焦虑;印防已毒素可使氯通道关闭,拮抗GABA的作用,可引起惊厥。所以,GABAA受体—氯通道—安定受体复合体在焦虑的发生和治疗中均起着十分重要的作用[2]。

GABAA受体—氯通道—安定受体复合体的亚基具有极大的多态性,人类GAGAA受体复合体亚基共有13个变异体,其中α亚基有7种变异体(α1~α7),β亚基有3种变异体(β1~β3),γ亚基有2种变异体(γ1~γ2),而δ亚基目前尚未发现有变异体[3]。有假说认为惊恐障碍的易感性及药物治疗的反应性与GAGAA受体复合体亚基变异体的不同有关,而由于每个亚基变异体都是由一个唯一的基因编码、由其相应的mRNA所转录,所以该假说进一步认为惊恐障碍的易感性及药物治疗的反应性与GAGAA受体复合体基因多态性、mRNA水平有关。Tanay(1996)[4]研究发现,分别给鼠慢性投以抗惊恐药丙米嗪、苯乙肼、甲唑安定可改变脑干GABAA受体复合体α1、β2、γ2亚基mRNA的水平,进而使特异性GABAA受体复合体的亚基表达改变,而这些基因表达的改变又不同于那些由非抗惊恐的抗焦虑药(布斯哌隆)所产生的改变,这有力支持了上述假说。Crowe(1997)[5]进一步检测了编码GABAA受体复合体8个亚基变异体的基因(α1~α5、β1、β3、γ2),在104个严格定义的惊恐障碍患者、134个广义的惊恐障碍或亚综合征惊恐障碍患者上述基因之间进行连锁研究,但结果示发现存在连锁,不支持上述假说,认为惊恐障碍不是由所检测的8个GABAA受体复合体亚基基因的任何一个基因的突变引起。

二、惊恐障碍与5-HT1D受体基因

药物的抗焦虑的作用还涉及其他递质系统,如NE系统尤其中枢蓝斑区,是预期危险的觉醒中枢;DA系统可能与情感性行为和焦虑表现有关;5-HT系统尤其在背际核,对焦虑的适应性行为起抑制作用。上述递质系统互相联系共同作用于脑的不同水平发挥作用[6]。

血浆皮浆类固醇含量上升,可反馈性地使T-HT更新率加速、5-HT机能活动过盛,可能与焦虑的发生有关[7];5-HT还可促进ACTH的分泌,从而调节和影响焦虑情绪反应[1]。抗焦虑药苯二氮类可降低5-HT活性、抑制脑内5-HT的更新率、减慢5-HT的耗存速度,这可能与其抗焦虑作用有关[1-7];抗焦虑药布斯哌隆能降低5-HT能神经元的活力,其抗焦虑作用也与此有关[8]。总之,5-HT系统与焦虑症的发生及治疗关系密切,5-HT受体基因也因此成为惊恐障碍的候选基因之一。

5-HT受本分14训亚型,其中5-HT1D受体还可再细分成5-HT1Dα受体的基因第1080位碱基可出现C与T转换,形成以080多态性[9];编码5HT1Dβ受体的基因第276位碱基可出现A与C转换,形成A276G多态性[9];这2个多态性均为静态多态性,不直接改变所编码的氨基酸结构,但它们可能间接影响5-HT1D受体的表达水平,进而影响惊恐障碍的易感性。所以,Ohara(1996)[9]研究了一组惊恐障碍患者和正常对照,对他们的5-HT1Dα与β受体基因进行测序分析,但结果发现两组间上述两个多态性均无明显的差异,不支持5-HT1D受体基因影响惊恐障碍易感性之说。

三、惊恐障碍与D4受体基因

多巴胺D4受体主要分布于额叶皮质区,由于编码D4受体的基因极具有多态性,这些多态性可能影响D4受体的功能,使该基因也成为评价惊恐障碍的候选基因之一。目前共发现D4受体基因有十种多态性,包括3种静态多态性和7种动态多态性。D4受体基因起始密码子上游第11密码子上第一31位碱基C可转换为T,从而形成多态性C-31T,等位基因A1(即第一31位碱基为C)频率为0.93,A2频率为0.07[10];D4受体基因起始密码子下游第11密码子中第31位碱基G可转换为C,使所编码的D4受体上第11位氨基酸Gly置换为氨基酸Arg,从而形成多态性Gly11Arg,等位基因A1(即第31为碱基G)频率为0.99,A2频率为0.11[10];D4受体基因第36至42密码子上一段21bp长的碱基序列可出现缺失,所形成多态性的等位基因A1无21bp的缺失,等位基因A1有21bp的缺失[10]。Cichon(1995)[10]研究148个德国正常人、256个精神分裂症患者、99个情感障碍患者和一组惊恐障碍患者,发现所有患者的多态性C-31T、Gly11Arg与正常人均无明显差别,在精神分裂症患者、情感障碍患者和正常人均未发现21bp的缺失,但在1个惊恐障碍患者发现有这个罕见的缺换变异,这可能意味着该缺失变异参与了惊恐障碍的发生,但也可能是机会性的假阳性结果。

四、惊恐障碍与CHRNA4基因

中枢神经递质NE对应激所引起的下丘脑—垂体—肾上腺反应起抑制作用,而乙酰胆碱(Ach)可促进ACTH的分泌,进而可调节和影响焦虑情绪反应[1];最近又有研究发现,焦虑症患者胆碱胆碱酯酶活性明显偏低,这提示焦虑与胆碱酯酶活性偏低有关[1]。总之,Ach能系统与焦虑症的发生关系密切。

Ach受体分N与M两种亚型,N型Ach受体(nicotinicacetylcholinereceptor,CHRN)在中枢神经系统分布十分广泛,在大脑皮质层、边缘系统的海马、杏仁核、纹状体都有分布。CHRN受体由四种亚基因组成,亚基分别命名为α、β、γ、δ,每个亚基是一个分子量约55kD的跨膜糖蛋白,它们按α2βγδ比例组成CHRN受体,总分子量约275kD;5个亚基呈五边形排列,共同围成CHRN受体的离子通道壁,总体呈不对称的哑铃状,每个CHRN受体胞外侧均有两个Ach结合位点,位于两个α亚基的第192和193位的半胶氨酸残基上,它们具有识别和结合Ach的能力;当Ach离子(主要是Na+)通过离子通道进入细胞内,突触后膜发生电位变化,产生生理效应[3]。

组成CHRN受体的亚基具有多种变异体[3],其中α亚基具有6种变异体(α2~α7),β亚基具有3种变异体(β2~β4),这些变异体可改变CHRN受体的功能,每个变异体由各自唯一的编码,其中编码α4亚基的基因(CHRNA4基因)定位于20q13.3基因座[11]。已有研究发现焦虑障碍与EEG低电压(LVEEG)相关联,约有1/3的VLEEG病例与基因座20q13.3连锁[1],所以有假说认为惊恐障碍的易感性也可能与CHRNA4受体基因有关,为了探讨二者之间的关系,Steinlein(1997)[11]检测了一组惊恐障碍病人和正常人3个不同的CHRA4基因多态性的等位基因频率,结果发现无显著差异,该研究不支持CHRNA4基因与惊恐障碍之间存在关联。

五、惊恐障碍与CCKB基因

胆囊收缩素(cholecystokinin,CCK)是一种神经肽,它主要是在细胞体内合成,其前体是由130个氨基酸组成,经过翻译后加工可产生CCK39、CCK33、CCK8和CCK4等活性肽片段[12]。CCK4低剂量可诱发惊恐障碍病人的惊恐发作[13],所以CCK有可能参与惊恐障碍的发生。

CCK受体分两个亚型,即CCKA和CCKB受体,CCKA受体分布于外周,而CCKB受体分布于大脑皮质、纹状体等[12],所以编码CCKB受体的基因是惊恐障碍的候选基因。Kato(1996)[13]用SSCP方法筛查了22个惊恐障碍家系的先证者CCKB基因的突变,发现两个多态性:在10个病人外显子4与5之间的内含子上发现有一个多态性2491CA,在1个先证者外显子2的胞外环上发现一个错义突变(1550GA,Val125Ile);在另外34个不相关的惊恐障碍病人和112个正常对照中检测这个错义突变,发现8.8%(3/34)的病人和4.4%(5/112)的正常人有这个突变。但这些突变在患者与正常人之间的差异均未达显著性,所以认为这些突变在惊恐障碍中没有病理生理意义。

六、结语

对惊恐障碍的分子遗传学研究已进行了不少,目前主要集中在探讨惊恐障碍与GABAA、5-HT1D、D4、CHRNA4受体基因及CCKB基因的关系。这些研究中除了发现D4受体基因一个21bp缺失变异可能参与了惊恐障碍的发生之外,共余研究均为阴性结果。但这并不能使我们对寻找惊恐障碍的易感基因失去信心,因为以前的研究尚存在不足之处:①对候选基因的亚型及多态性的的类型调查不全:如对GABAA受体复合休13种亚基基因只调查了8个,尚有5个未调查;对5-HT受体基因14种亚型只调查了1个,尚有13个未调查;对D4受体基因10种多态性只调查了3个,尚有7个未调查;对CHRN受体11种亚基基因只调查了1个,尚有10个未调查。②样本量较小:惊恐障碍可能是一种遗传异质性疾病,是由多个基因微小的遗传效应叠加而致病的,所以要调查每个基因与惊恐障碍的关系,往往需林大样本才能发现阳性结果,以前的研究样本量都不大,难以排除假阴性结果的可能性,况且目前唯一发现阳性结果的那个研究也可能因为样本量太小,难以排除是机会性造成的假阳性结果。所以有关惊恐障碍的分子遗传学研究还有等于进一步扩大样本量、深入全面地进行。

参考文献

1沈渔村主编,精神病学,第三版,北京:人民卫生出版社,1995,413~416

2许绍芬主编。神经生物学。第一版,上海:上海医学大学出版社,1992。142~151

3陈宜张主编。分子神经生物学。第一版,北京:人民军医出版社,1995;107~117

4TanayVAetal.Neuropharmacology,1996;35:(9~10):1457

5CroweRRetal.AmJPsychiatry,1997;154(8):1096

6陈彦方等主编。新编临床精神药物手册。第一版,山东:山东科学技术出版社,1998。115~116

7沈渔村主编。精神病学。第三版,北京:人民卫生出版社,1995。39~43

8徐韬园。上海精神医学,191;新(3增):42

9OharaKetal.BopPsychiatr,1996;39(1):5

10CichonSetal.PsychiatrGenet,1995;5(3):97

11SteinleinOKetal.AmJMedGenet,1997;74(2):199

遗传学进展范文

(一)哮喘发病机理概述:支气管哮喘是由免疫、遗传和环境等因素共同作用所引起的呼吸道急、慢性炎症,多为过敏性炎症。呼吸道的急性炎症使气道管壁的血管通透性增加、粘液分泌增多及平滑肌痉挛;慢性炎症进一步使气道结构和功能改变,导致气道高反应性,从而引起喘息、咳嗽和呼吸困难等哮喘症状。IgE介导的气道过敏性炎症反应是哮喘最常见的发病机制;其次,研究表明遗传因素在哮喘发病中起着重要的作用;同时环境因素在哮喘发病中也具有不可忽视的作用,环境因素中最重要的是过敏原的密度、患儿在过敏原中暴露的时间和方式,其他的环境因素包括吸烟、大气污染以及呼吸道感染,尤其是病毒感染。当具有遗传易感性的个体暴露在一定的环境中,气道的过敏性炎症就发生了。可见,免疫、遗传和环境在哮喘发病中的作用是相互影响的。

(二)哮喘表型及其遗传分析:研究遗传性疾病首先必须确定疾病的表型,这一点在哮喘的遗传研究中显得尤其困难。在流行病学调查研究中,一般基于既往的喘息并结合特应性表现和气道高反应性诊断哮喘。特应性表现包括血清总IgE升高和变应原皮试阳性两个方面。研究表明,特应性与非特异性的支气管高反应性之间存在明显的相关性[1],但同样存在以下客观事实:具有特应性的个体可以没有气道高反应性;具有气道高反应性的研究对象可以不具有特应性或者不患哮喘。气道高反应性与哮喘性状的不一致性使人们猜想:气道高反应性可能是一种独立的遗传表型性状。有人在患有特应性哮喘儿童的一级亲属中测定了支气管易变性的患病率,结果表明,具有特应性表型的亲属的气道高反应性患病率为39%,而健康亲属患病率为32%。同时发现群体中过敏原皮肤试验阳性与气道高反应性之间没有直接的联系,提示这些现象为分离性状。也有研究提示,哮喘儿童呈现明显的气道高反应性,其父母的气道高反应性支持是单基因突变引起,且二者还有不同比例的不典型气道高反应性。此研究还表明气道高反应与变应原皮试阳性或血清总IgE高低无明显联系。比较患症状性哮喘与非症状性哮喘的儿童,前者父母的气道高反应性更明显,这一点支持支气管反应性可能以不完全外显的常染色体显性遗传方式遗传下来的观点,所以可能有两种因素引起气道的高反应性:(1)先天性决定的常染色点引起温和性的气道高反应性;(2)继发于气道过敏性炎症的获得性因素进一步增加气道的高反应性。

(三)哮喘基因研究:1.染色体11q13与高亲和性的IgE受体(FcεRIβ):有人把哮喘基因定位于染色体11q12,13,并提出特应性传递主要是通过母系遗传。在基因组随机研究中发现,11q13与特应性有关,在英国和日本群体研究中确立了此种连锁关系。以后用11q13区域图谱证实了此候选基因的存在。IgE受体有一种变异体(亮氨酸181),这种变异体可能增加受体的信号传递能力,增加肥大细胞释放白细胞介素(IL)-4,并刺激高水平的IgE合成。新近的研究发现染色体11q13上的FcεRIβ基因可以作为特应性哮喘的候选基因[2]。IgE特异性受体也可以使哮喘易感者产生气道高反应性而不是特应性[3]。

2.染色体5q与细胞因子基因族:染色体5q31上的细胞因子基因族使得基因组的这个区域成为包含特应性基因的候选区域。在11个Amish大家系中的研究发现,血清总IgE水平与此区域相关联,即IL-4基因两个等位基因相同的同胞,其总血清IgE水平较一致,而等位基因不同的同胞,其IgE水平有较大的差异[4]。经采用同胞配对和Lod评分法对荷兰人群进行分析,发现染色体5q上有许多候选基因影响血清IgE的水平,其候选基因可能位于D5S436至D5S658附近,该区域跨过几百万个碱基对的范围,有许多候选基因,包括IL-4、IL-3、IL-5、干扰素、调节因子-1、单核-巨噬细胞克隆刺激因子的基因[5]。也可能是多种因素参与了特应质的发病机理。另有学者提出,IL-4基因调节区的多态性可能与特应性有关系[6]。应用连锁分析及同胞配对方法对日本68个家系的306位成员进行研究,结果表明,哮喘基因在染色体5q31~33上与遗传标记IL-4基因、IL-9基因及D5S393存在连锁(P=0.003,P=0.018,P=0.0077),且这些特异性位点与儿童哮喘的发病相关联[7]。

3.14q连锁与T细胞抗原受体(TCR):研究显示14q上存在TCR位点与特异性IgE反应的连锁区域,这种连锁是在两个独立人群中发现的,并符合常染色体隐性遗传。这个区域也包括TCRδ链基因,位于α位点内,因此δ链基因可能是连锁的候选基因。虽然这种结果没有独立重复出来,但它提示TCR基因的多态性限制了机体对特异性抗原的反应能力[8]。临床研究表明,染色体14q32上的免疫球蛋白重链基因与特应性及非特应性儿童哮喘存在一定的联系[9]。

4.哮喘与人类白细胞抗原(HLA):长期以来学者们认为,HLAⅡ类抗原(包括DP、DQ和DR)在抗原呈递过程中起关键作用,影响免疫反应的特异性,因此人们对HLAⅡ类抗原等位基因与某些特殊抗原的IgE高反应性之间的关系尤其关注,目前仅发现HLA与高纯度吸入的变应原有关,而与复杂的常见变应原无关。室尘螨DerP的特异性抗原呈递需要特异性HLA-DR和DQ基因产物[10],AmbaV抗原呈递需要HLA-DRB1等位基因中DRB1/2.2和DRB1/2.12参与[11]。HLADQw抗原参与了屋尘螨所致的中国儿童哮喘的发病[12],Mullarkey等[13]研究显示,DQW2表型是阿司匹林过敏性哮喘的标记物,但Perichon等[14]研究发现阿司匹林哮喘与DQ抗原无关,而与DQB1*0101等位基因相关,进一步研究发现DQB1抗原上的一个氨基酸序列的改变可直接导致哮喘发生。现在利用可靠的过敏模型进一步研究人类免疫反应的分子基础,HLA位点已经确定为特应性和哮喘发病机理的候选基因,主要是由于HLAⅡ类抗原在抗原表达和T细胞抑制中的作用。

5.哮喘的严重性与β2-肾上腺素能受体(β2-AR)基因:β2-肾上腺素能受体参与了支气管哮喘的发病。β2-肾上腺素能受体基因存在9个不同的点突变,但只有4个引起氨基酸序列的改变;需持续口服激素才能控制症状的哮喘患者75%是第16位氨基酸(核苷酸46)为甘氨酸而非精氨酸的纯合子个体。此种突变体与哮喘的严重性可能存在一定的联系,尤其与夜间哮喘联系更紧密[15]。另一个突变体是27位的谷酰胺被谷氨酸代替,它与哮喘群体的气道不显著性高反应性相关,可使β2-受体对其激动剂诱导的下调有抵抗力[16]。Ohe等[17]用BamI内切酶对4个日本家系58个成员β2-肾上腺素能受体基因的限制性片段长度多态性(RFLP)分析发现,在该人群中,存在两个等位基因多态性(2.3kb和2.1kb),无等位基因2.3kb(即为2.1kb的纯合子)的成员表现为对吸入沙丁胺醇的反应性不佳,在哮喘病例中无2.3kb等位基因的比例高。这些研究似乎表明,β2肾上腺素能受体基因的多态性在哮喘的发病中并不起主要作用,但它可能与患病个体病情的严重性有一定关系。

6.哮喘与α1-抗胰蛋白酶突变体(α1-AT):α1-AT遗传缺陷在慢性阻塞性肺疾患中起着重要的作用。它也参与支气管哮喘中蛋白水解酶抑制剂的平衡与抗平衡过程。两个主要的等位基因(Z和S)与α1-AT缺失有关。研究表明,Z等位基因杂合缺失与类固醇依赖性哮喘紧密相关[18],S等位基因杂合缺失与哮喘的气道高反应性存在联系[19]。

7.哮喘与α1-抗糜蛋白酶(α1-ACT)遗传缺陷:Lindmark等[20]采用病例对照研究,在瑞典人群中对172例哮喘儿童和193例儿童进行了α1-ACT遗传缺失筛查,并比较一些临床资料。结果表明,哮喘组α1-ACT杂合缺失频率为2.9%,明显高于对照组;且α1-ACT杂合缺失与非缺失患者相比,前者哮喘初发年龄早,住院次数多,放射性过敏原吸附试验阳性率高,此结论支持α1-ACT杂合缺失增加了患儿童哮喘的危险性,并在一定程度上影响儿童哮喘的严重性。我们应用同样方法在重庆市90例哮喘儿童和180例健康儿童中初步筛查α1-ACT杂合缺失,发现哮喘组α1-ACT杂合缺失频率为4.4%,明显高于对照组;与儿童哮喘发病及某些临床指标相关联,与Lindmark研究结果相一致,但引起α1-ACT杂合缺失的基因结构如何目前仍未定论。

8.其他位点及哮喘相关基因:国外学者利用常染色体上253个微卫星标记物及X染色体上的16个微卫星标记物,对澳大利亚西部80个哮喘家系进行了全基因组扫描,结果提示第4、7、13、16号染色体上也有可能存在哮喘易感基因[21]。

(四)哮喘基因研究的意义:在此,我们阐述了遗传因素在哮喘发病中的作用,基因组研究将继续检测其他的相关基因。对引起哮喘和特应性疾病的遗传变异的理解能够为儿童哮喘的临床诊断和治疗开辟广阔的途径:(1)改变免疫反应的特异性突变体的发现为基因治疗提供了靶子。但由于确定基因突变的研究费时、基因治疗的危险性及高成本,现在还不能合法地对非致死性疾病进行基因治疗。(2)用于发展特异性的药物疗法。针对引起哮喘发病的基因异常,给予相应的药物调节。例如,如果具有加强功能的IL-4变异体或者具有缺乏功能的IFN-γ变异体被确定为哮喘病因,则可以直接制造调节剂。然而,由多基因参与的免疫和炎症反应将可能造成无效或危险性。(3)用于疾病的筛查。可根据研究结果筛查出携带特应性基因者,然后通过改善环境,如避免接触烟雾、防止感染等预防哮喘发作。或根据结果提供早期诊断方法,以便及早对哮喘患儿进行干预。

参考文献

1BurrowsB,SearsMR,FlanneryEM,etal.Relationofthecourseofbronchialresponsivenessfromage9toage15toallergy.AmJRespirCritCareMed,1995,152(4Pt1):1302-1308.

2MaoXQ,ShirakawaT,EnomotoT,etal.AssociationbetweenasthmaandanintragenicvariantofCC16onchromosome11q13.Clin-Genet,1998,53:54-56.

3VanHerwerdenL,HarrapSB,WongZYH,etal.linkageofhigh-affinityIgEreceptorgenewithbronchicalhypereactivity,evenintheabsenceofatopy.Lancet,1995,346:1262-1265.

4MarshDG,NeelyJD,BreazealeDR,etal.LinkageanalysisofIL-4andotherchromosome5q31.1markersandtotalserumimmuno-globulinIgEconcentrations.Science,1994,264:1152-1154.

5PostmaDS,BleeckerER,AmelungPJ,et al.Geneticsusceptibilitytoasthma-bronchialhyperresponsivenesscoinheritedwithamajorgeneforatopy.NEnglJMed,1995,333:894-900.

6BoyerS,PereiraE,PalmerL,etal.Confirmationofthepresenceofapolymorphismintheinterleukin4promoterinanasthmaticcohort[abstract].AmJRespirCritCareMed,1995,151:A470.

7NoguchiE,ShibasakiM,ArinamlT,etal.Evidenceforlinkagebetweenasthmaatopyinchildhoodandchromosome5q31-q33inaJapanesepopulation.AmJRepirCritCareMed,1997,156:1390-1393.

8MoffattMF,HillMR,CornnelisF.etal.GeneticlinkageofT-cellreceptorα/δcomplextospecificIgEresponses.Lancet,1994,343:1597-1600.

9OxeliusVA,CarlssonAM,AurivilliusM.AlternativeG1m,G2mandG3mallotypesofIG-HGgennescorrelatewithatopicandnonatopicpathwaysofimmuneregulationinchildrenwithbronchialasthma.IntArchAllergyApplImmunnol,1998,115:215-219.

10VerhoefA,HigginsJA,ThorpeCJ,etal.Clonalanalysisoftheatopicimmuneresponnsetothegroup2allergennofDermatopha-goidesspp:identificationofHLA-DRandHLA-DQrestrictedTcellepitopes.IntImmunol,1993,5:1589-1597.

11HuangSK,ZwolloP,MarshDG.ClassⅡmajorhistocompatibilitycomplexrestrictionofhumanTcellresponsestoshortragweedallergen,AmbVEurJImmunol,1991,21:1469-1473.

12HsiehKH,ShiehCC,HsiehRP,etal.AssociationofHLA-DQw2withChinesechildhoodasthma.TissueAntigens,1991,38:181-182.

13MullarkeyMF,ThomasPS,HansenJA,etal.Associationofaspirin-sensitiveasthmawithHLA-DQw2.AmRevRespairDis,1986,133:261-263.

14PerichonB,KrishnamoorthyR.AsthmaandHLAsystem.AllegImmunol,1991,23:301.

15ReihsausE,InnisM,MacintyreN,etal.Mutationsinthegeneencodingfortheβ2-adrenergicreceptorinnnormaiandasthmaticsubjects.AmJRespirCellMolBiol,1993,8:334-339.

16HallIP,WheatleyA,WildingP,etal.AssociationofGlu27β2-adrenergicpolymorphysimswithlowerairwayreactivityinasthmaticsubjects.Lancet,1995,345:1213-1214.

17OheM,MunakataM,HizawaN,etal.β2-adrenergicreceptorgenerestrictionfragmentlengthpolymorphysimandbronchialasthma.Thorax,1995,50:353-359.

18KatzRM,LiebermanJ,SiegelSC.α1-antitrypsinlevelsandprevalenceofPivariantphenotypesinasthmaticchildren.JAllergyClinImmunol,1976,57:41-45.

19TownleyRG,SouthardJG,RadfordP,etal.AssociationofMSPiphenotypewithairwayhyperresponsiveness.Chest,1990,98:594-599.

更多范文

热门推荐