逻辑推理的主要规则(6篇)

时间:2025-01-01

逻辑推理的主要规则篇1

关键词三段论推理,心理逻辑,心理模型,知识和试题双重结构模型。

分类号B842.5

1问题的提出

目前,西方推理心理学的研究者们对人类在推理过程中是如何进行心理加工的这一问题提出了众多的理论模型,其中最有代表性的是以下2种在“人类推理是否合乎逻辑”问题上相互对立的理论:

一是由Braine等人提出的“心理逻辑”(mental-logic)理论,该理论强调人类推理加工的逻辑性质,其主要观点是,认为人类推理过程包括以下3个组成部分:(1)一组推理图式;(2)一种以图式为工具进行推理的推理程序;(3)一组独立激活的实用原理,它们影响对表面结构的解释,并且能暗示或抑制某种推断和推理策略[1]。

二是由Johnson-Laird提出的“心理模型”(mentalmodel)理论,该理论把推理者的推理错误归之为受非逻辑加工因素的影响所致,认为人类在进行推理活动时,整个过程可分为理解、描述和有效性检验3个不同的阶段;推理者在进行推理时其结果的正确性如何依赖于由推理前提所能建构的心理模型的数量:能建构的心理模型越多,推理者越难得出正确结论[2]。

总之,西方心理学家的非逻辑理论认为,人们进行推理时完全不理会形式的法则,只是在其他因素影响下完成推理行为;而逻辑理论则认为,人们进行推理时是会考虑形式逻辑的法则的,只是在某些因素影响下会使推理者选择不合形式逻辑法则的结论。

胡竹菁对现有的西方演绎推理心理学研究进行剖析后曾指出,虽然“心理逻辑”和“心理模型”在推理加工的逻辑非逻辑问题上是两种对立的理论模型,但它们的共同缺点之一是“未能注意到试题的结构与推理者知识结构的相互关系,因此对于被试的推理结果只按形式逻辑规则来判定其正误,而未能考虑到被试在进行结论正确性的决策时的心理活动过程”[3]。例如,对于表3中的一个三段论推理题的前提组合“所有的植物都是生物,所有的松树都是植物”,另一个三段论推理题的前提组合“所有的大夫都是教师,所有的运动员都是大夫”,根据形式逻辑的观点,上述2题在推理形式上都属于第一格的AA式,也就是说,它们具有下列共同的逻辑形式:“所有的M都是P,所有的S都是M”,因此,都能推出有效结论“所以,所有的S都是P”,即第一组前提能推出有效结论“所有的松树都是生物”,第二组前提能推出有效结论“所有的运动员都是大夫”。也就是说,根据形式逻辑法则,上述2题都是有效的推理。在西方现有的研究中,如果被试认为例题2的推理结论是错的,则几乎所有的研究者都根据这种结论违反了形式逻辑法则而认为他作了错误的推理。

我们认为,这样的看法对于推理者来说是不公平的,因为虽然试题1和试题2在形式逻辑意义上具有相同的逻辑形式结构,但这2题在推理内容的构成方面是不同的:试题1是由内容正确的前提组成,试题2则是由内容不正确的前提组成。因此,如果大学生被试对试题2进行推理时,对推理结论正确与否的回答是“正确”,我们不能由此认为这些大学生被试不知道“运动员不一定是大夫”的道理,他们所以会作出这样的回答是因为根据形式逻辑法则,这种推理结论是有效的;而如果大学生被试对试题2进行推理时,对推理结论正确与否的回答是“错误”,虽然这种回答不符合形式逻辑法则,但我们也不能由此就认为这些大学生被试不知道“所有的M都是P,所有的S都是M,所以,所有的S都是P”是正确的逻辑推理形式。他们之所以会这样回答是因为推理题的内容是错误的。总之,人们在进行逻辑推理时,所面对的推理题是有一定的结构的,他们进行推理时所依据的推理知识只不过是试题结构在人脑中的反映而已,所以,这些推理知识也是有结构的。由此,我们在探讨人类推理的心理加工过程时,也就应该分析推理加工与试题结构和知识结构的相互关系。而西方三段论推理心理学研究的缺陷之一就是未能看到试题结构和知识结构之间的相互关系。

为解决这些问题,胡竹菁提出了一个有关人类演绎推理的新的理论模型,即“知识和试题双重结构模型”[3],其基本观点是:

(1)人的推理行为(B(r))是推理试题结构(含形式结构IS(form)和内容结构IS(content))和推理者所掌握的推理知识结构(含形式知识结构KS(form)和内容知识结构KS(content))的函数,用公式表示即:B(r)=f(IS(form)、IS(content),KS(form)、KS(content))。

(2)可以用“理性推理”和“逻辑推理”2个维度来衡量推理者进行推理时所依据的知识:前一个维度是反映推理者对推理所要求的知识掌握了多少,反映的是处于不同知识水平的推理者所进行的推理加工行为,推理者掌握较多推理知识时所进行的推理加工属于理性加工,推理者掌握较少推理知识时所进行的推理加工属于非理性加工;后一个维度是反映推理者所掌握的推理知识中有关“推理形式”和“推理内容”之间的比例,反映的是推理者对这2种知识所掌握的比例不同的推理者所进行的推理加工行为,推理者掌握“推理形式”方面的知识比“推理内容”方面的知识更多时所进行的推理加工属于逻辑加工,推理者掌握“推理形式”方面的知识比“推理内容”方面的知识更少时所进行的推理加工属于非逻辑加工。简言之,推理者在一定推理知识指导下所进行的推理行为称之为“理性推理”;推理者在没有任何推理知识指导下所进行的推理行为称之为“非理性推理”。当推理者主要是依据形式逻辑知识来选择推理结论时,他所进行的推理加工可称为逻辑加工,反之,如果推理者是根据对“推理内容”知识的掌握来进行推理结论的选择时,则他所进行的推理加工称为非逻辑加工。

胡竹菁等曾对三段论推理过程中被试在进行结论正确性的判定时是否存在“形式标准”和“内容标准”这两种判定标准问题作了实验论证[4]。但有人对此提出了不同看法,认为“当被试‘知道某一前提有错,也知道三段论推理题在形式上是正确的时候’是否一定如作者所说会因‘两种评判标准’的矛盾而产生心理上的冲突呢?可以设想,具有相当文化水准和科学训练的大学生不至于连前提有误而‘形式正确’的三段论不能得出正确结论这样的常识也没有;把结论判为‘对’,恐怕绝大多数是由于既未发现前提中的内容错误(这一发现可以从逻辑上判定结论错误),也未发现结论本身的错误(这一发现可以从事实上直接判定结论错误)”[5]。

心理学的研究不能仅停留在“设想”上。为了进一步弄清大学生在知道“前提有误”的情况下进行推理时是否会选择不符合形式逻辑要求的结论,比较上述3种模型对被试答题结果的解释效果,进而进一步认识人类三段论推理的心理加工实质,我们设计并实施了这一实验。

2实验方法

2.1实验材料

包括“句子判断”、“纯形式三段论推理”和“含有内容的三段论推理”三部分组成。

“句子判断”测验部分包括32道判断题。其内容就是“含内容的三段论推理”题中的前提所组成(如表3所示的一组前题为“所有的植物都是生物,所有的松树都是植物”,其中每个前提都构成一道句子判断题)。在这些判断题中,有些是大部分人熟悉的句子,有些则是人们不太熟悉的句子;此外,有些句子的内容是正确的,有些句子的内容则是错误的。这两个维度组合在一起就形成如下4种类型的句子判断题:熟悉正确(如“所有的松树都是植物”)、熟悉错误(如“所有的运动员都是大夫”)、不熟悉正确(如“所有的溴都是卤族元素”)、不熟悉错误(如“所有的甲烯都是烯烃”)。

被试在句子判断中的任务是对构成16道推理题前提的32个句子的正误作出判定。

“纯形式三段论推理”测验包括8道试题。其中,选择按Johnson-Laird的观点属于1个心理模型(如“所有的P都是M,所有的M都是S”)、2个心理模型(如“所有的B都是A,有些的B不是C”)和3个心理模型(如“所有的M都不是P,有些S是M”)的三段论各1种(上述3题的正确率依次为89%、51%和38%),用不同的英文字母对每种模型建构2道试题,另外,再建构2道在形式上推不出正确结论的三段论推理题。实验过程中这8道题按随机排列的顺序依次呈现。

“含内容的三段论推理”测验包括16道试题。其构成如表1所示。实验过程中第三部分的16道题也按随机排列的顺序依次呈现。每道试题之后都有9种不同的选项:其中,全称肯定、全称否定、特称肯定、特称否定的结论各2项(其中1项是以大前提非中项的概念为主项,另1项是以小前提非中项的概念为主项),第9个选项为“上述所有结论都不对”。

2.2被试

江西师范大学随机抽取的大学生被试72名,所有被试均告知未学过形式逻辑学或辩证逻辑学。

2.3实验程序

为了避免被试参考前面的试题,全部测验题都输入计算机。被试根据计算机提示的信息在键盘上操作解题。被试在句子测验中的任务是对句子内容是否正确作出判断。在解三段论推理题时的任务和要求是对所列出的九种推理结果作出自已的选择。所有被试均按“句子判断、纯形式三段论推理题、含内容的三段论推理题”的顺序在答卷纸上根据显示器上出现的题目按要求作出自己的选择。

3结果分析与讨论

3.1纯形式三段论推理结果分析

被试在不同心理模型的两道纯形式三段论推理中按形式逻辑的要求都作出正确选择的人数统计如表2所示。

前面已指出,我们在3种模型中所选出的试题类型在Johnson-Laird(1991)实验中的正确率分别为89%、51%和38%。由上表结果可知,我们的实验结果除2个模型的正确率与Johnson-Laird的结果有比较大的差异外,另外2种模型的结果与Johnson-Laird的正确率相近。

我们的研究目的是想了解既掌握了推理形式又知道前提内容的正误的被试会怎样进行推理。由于掌握2个或3个模型推理形式的被试太少,下面的分析将主要集中在56位已经掌握一个模型的形式逻辑推理的被试答题结果上。

3.2一个模型不同内容的句子判断结果分析

被试在1个模型不同内容的三段论推理题掌握2个前提的人数统计有如表3所示。

表3中的数据表明,已掌握1个模型的三段论推理题的56位被试在对本实验中所列出的不同的推理题的内容的知识结构是不一样的。表中“合计”一栏的含义是指在2个前提上都作出正确判定的人数,括号中的数值是指该人数值在56个正确掌握1个模型推理题的人群中的百分数。总的来说,被试在句子判断测验中的结果分析显示,他们对生活中熟悉内容的掌握比生活中不熟悉内容的掌握要更好。

3.3一个模型含内容的三段论推理结果分析

既掌握了1个模型的三段论推理形式,又知道2个前提的正误的被试正确进行三段论推理的人数统计如表4所示。

表4的结果表明,虽然有56位被试对本实验中所列出的一个模型的形式逻辑推理规则基本掌握,但被试在不同内容结构推理题中的正确答题人数还是有很大差异的:对熟悉的正确内容构成的三段论推理题正确作答人数高达84.6%,而对熟悉的错误内容构成的三段论推理题按形式逻辑规则要求正确作答人数则只有48.1%,在其他27名正确判定2个前提的正误的被试中,有18名被试作了“上述结论都不对”的选择,这在27名按形式逻辑规则未能选择正确答案的被试中占67%的比例,在52名既掌握形式逻辑规则又知道两个前提的内容是错误的被试中占37%的比例;对不熟悉的内容构成的三段论推理题无论其内容是否正确,按形式逻辑规则要求正确作答人数都比较低。

4讨论

4.1Braine等人提出的“心理逻辑”(mental-logic)理论认为人类进行逻辑推理时是按形式逻辑的规则进行推理的。从表4所列的结果可以看出,当人们对既知道形式逻辑规则又知道前提内容是正确时,确实有超过84%的人按形式逻辑规则进行并正确地选择答案;但表4的结果也表明,即使是在纯形式推理题中能按形式逻辑推理要求正确判定推理结论的被试在对熟悉的错误内容所构成的三段论推理题进行推理时也有一半左右的被试不再按形式逻辑规则来选择推理结果。

4.2表2的数据表明,被试在对由纯形式符号所构成的形式逻辑题进行推理时,不同模型数量的正确率确实有差异,被试在一个模型推理题上的正确率比多模型的正确率更高。但心理模型不能解释表4所列的被试对同一模型不同内容所构成的三段论进行推理时得到的结果,已掌握形式逻辑推理规则的56位在对由不熟悉内容所构成的1个模型的三段论推理结果的平均正确率只有20%左右,与他们在多模型三段论推理中得到的结果相似。

4.3本实验结果再次证实,当既掌握形式逻辑推理规则又知道推理题中前提有误的人在推理过程中要从已知推出未知时,确实存在“推理形式”和“推理内容”两种判定标准。这两种标准是人类推理知识的构成部分,而推理知识也就是人们对于推理试题的形式和内容的反映。当被试用这两种推理标准来对其结构在形式上是对的但在内容上是错误的推理题进行推理时,“形式标准”要求他们按推理规则选择“所有的…是…”的答案,而“内容标准”则要求他们选择“上述所有答案都不对”的答案,结果,只有近一半的被试作出了符合形式逻辑规则要求的推理,有37%的被试则按内容标准选择了“上述所有答案都不对”的答案。这一结果再次表明,由胡竹菁提出的“试题与知识双重结构模型”能较好地说明人类进行三段论推理时的内容心理加工过程。

参考文献

1BraineMD,O′brienDP.MentalLogic.LawrenceErlbaumAssociates,Publishers,1998,1~6

2Johnson-LairdPN,ByrneRM.Deduction.LawrenceErlbaumAssociates,Publishers,1991,35~36

3胡竹菁.演绎推理的心理学研究.北京:人民教育出版社,2000,229~243

4胡竹菁,张厚粲.论三段论推理过程中结论正确性的两种判定标准.心理学报,1996.28(1):58~63

5邓立平.对“论三段论推理结论正确性的两种判定标准”的几点评议.心理学报,1999.31(1):118~120

FURTHERCONSIDERATIONONTHEDUAL-CRITERIA

FORCORRECTREASONING

HuZhujing,ZhuLiping

(EducationalSchoolofJiangxiNormalUniversity,Nanchang330027)

Abstract

逻辑推理的主要规则篇2

关键词:哲学逻辑;逻辑哲学;词义;辨析

从20世纪50年代开始,哲学逻辑和逻辑哲学的研究在国际哲学界、逻辑学界蓬勃兴起,国内逻辑学界也于上世纪80年代开始,介绍、引进国外哲学逻辑和逻辑哲学的研究成果,目前对哲学逻辑与逻辑哲学的研究,从总体上讲,国内仍处于消化、吸收并尝试进行创造性研究阶段。哲学逻辑和逻辑哲学这是两门密切相关的学科,二者都是现代哲学与现代逻辑相互渗透的产物,但它们是两门不同的学科,有着不同的研究对象与范围。然而,由于“哲学逻辑”至今是一个充满歧义的词,不同的学者对它有不同的理解,并在很不相同的意义上使用它,冠以“哲学逻辑”之名的书籍五花八门,因而,和逻辑哲学在词义上发生了混乱。为了进一步推动哲学逻辑与逻辑哲学的研究,促进这两门新兴学科的确立与完善,因此,有必要对哲学逻辑的精确涵义及与逻辑哲学的关系作一番梳理与辨析。

一哲学逻辑词义的历史演变

最早明确使用“哲学逻辑”一词的是英国著名数学家、哲学家、逻辑学家罗素。他在《我们关于外在世界的知识》一书(1929)中,指出:“数理逻辑,除了它的初创形式之外,就连最现代的形式也不直接具有哲学上的重要意义。在初创以后,它就属于数学而不属于哲学了。我将要扼要论述的,是数理逻辑的初创形式,只有这个部分才真正称得上哲学逻辑。往后的发展,尽管没有直接的哲学意义,但是对哲学研究有很大的间接用处。”①他还认为,哲学逻辑的真正对象乃是为各种命题和推理所共有的逻辑形式,哲学逻辑乃是对逻辑形式的研究。以往的哲学由于被语言表面的语法形式所蒙骗,未能认清其隐藏着的真正的逻辑形式,而犯了许多重大的哲学错误。

可见,罗素对“哲学逻辑”一词的词义只给予了初步界定,而未加阐释。后来的英国著名学者斯特劳森赋予了“哲学逻辑”以明确的含义。1967年,斯特劳森编辑出版了一本题为《哲学逻辑》的文集,该文集收入了弗雷格、格拉斯等学者的相关论文,他为此书撰写了一长篇序言,在序言中,斯特劳森阐述了他对哲学逻辑的观点。他把整个逻辑领域区分为两部分:“逻辑是关于命题的一般理论。它有形式的部分和哲学的部分。”分别叫形式逻辑和哲学逻辑。在他看来,形式逻辑研究命题之间的可演绎关系或蕴涵关系,它要以系统的方式排列有关这种蕴涵关系的各种规律;而哲学逻辑则要研究形式逻辑产生的哲学背景和哲学预设,以及由此引出的一系列哲学问题,例如:究竟什么是命题?说一个命题为真是什么意思?命题联结词的准确性质,特别是出现在条件命题中的蕴涵的准确性质是什么?意义概念应当怎样加以分析?真理概念和分析性概念应当怎样加以分析?指称和述谓((Predica2tion)的区别与联系是什么?哲学逻辑学家要回答这些问题,就必须回答有关语言和各种语言表达式的性质与功能等问题。因此,需要进一步研究这样一些问题:实际的言语活动模式;意义理论;语言交际的特性与条件,等等。②

很明显,在斯特劳森那里,“哲学逻辑”其实质不是逻辑,而是某种形式的哲学,是对与逻辑有关的哲学概念和哲学问题的仔细探究,它的成果和方法有直接或,间接的哲学意义。在斯特劳森观点的影响下,英国哲学家大都在哲学意义上使用了“哲学逻辑”一词。例如,格雷林在《哲学逻辑引论》一书中指出:“哲学逻辑是哲学,尽管它是提供逻辑学知识,对逻辑问题很敏感的哲学,但它是哲学。”他甚至认为,在“哲学逻辑”这一名词中,“逻辑”这一字眼的作用会引人误解,因为,哲学逻辑并不是关于逻辑的,也不是逻辑学。正是基于这些看法,格雷林的《哲学逻辑引论》所研究的主要是:命题;必然性、分析性与先验性、存在、预设与摹状词、实在论与反实在论,③等等。与格雷林同为英国牛津大学讲师的沃尔夫拉姆在1989年出版的《哲学逻辑导论》一书中,沃尔夫拉姆也阐述了他对哲学逻辑的看法。在他看来,哲学逻辑是关于论证、意义与真理的研究,它的主题与形式逻辑相关,但其研究对象不同,它不像形式逻辑那样处理有效论证,它只检验已经建构好的逻辑系统中的基本概念。根据这种观点,沃尔夫拉姆在书中主要研究了指称与真值、必然真、分析与综合、存在与同一、意义问题,等等。④在由联合国教科文组织筹划,法国哲学家保罗·利科主编的《哲学主要趋向》(1979)一书中,所沿用的都是这种意义上的哲学逻辑概念。

然而,数理逻辑诞生以来,数理逻辑成果被广泛运用,大批应用逻辑分支如同雨后春笋般地涌现出来,很多哲学家与逻辑学家关注了这一情况,赋予了哲学逻辑以逻辑的含义。众所周知,在逻辑发展史上,莱布尼茨最早提出了创立数理逻辑的理想,他为此付出了艰苦的努力,却未能获得成功。

1930年哥德尔证明了谓词演算的完全性,数理逻辑才算真正创立。但是,有一部分逻辑学家不满意已有的数理逻辑系统,认为它们存在严重的“缺陷”和“不足”,于是着手“修改”或“扩充”已有的一阶逻辑。他们或者创立了一些修正以至替代它们的新逻辑分支,例如直觉主义逻辑,相干和衍推的逻辑,多值逻辑,自由逻辑等等,或者应用已有的一阶逻辑工具于哲学、语言学等专门领域,创立了带有浓厚应用色彩的多种逻辑分支,例如,模态逻辑、时态逻辑、道义逻辑、认知逻辑等等。

这些新的逻辑系统或分支在20世纪20—30年代开始出现,在50—70年代繁荣兴旺起来,以至最后形成了一个新兴的逻辑学科群体。⑤因此,相当的学者越来越倾向于用“哲学逻辑”一词专指这个新兴的学科群体。例如,美国逻辑学家莱斯彻在1968年出版的《哲学逻辑论集》中阐述了他对哲学逻辑的看法。他指出,现代逻辑的发展有两个方向:一是数学方向,即数理逻辑,它是现代逻辑发展的主流;另一个方向则是哲学逻辑,它是对一些相关的哲学领域,比如本体论、认识论领域、伦理道德与规范概念等的逻辑研究,这些研究的共同特点是它们与数学并无直接联系,而往往具有较为明显的哲学背景与哲学意义,故称为哲学逻辑。⑥在他看来,模态逻辑、时态逻辑、道义逻辑、认知逻辑等等,就是哲学逻辑研究的主要内容。他所构造的哲学逻辑就是由这些研究内容所组成的学科群体。

关于哲学逻辑的词义,也有许多学者是在哲学与逻辑的双重意义上来使用。例如,柯比和古尔德合编的《当代哲学逻辑》以及冯.赖特的论文集《哲学逻辑》都属于这一类型。在他们看来,哲学逻辑既指对逻辑所产生或引起的哲学概念和问题的哲学研究,也指这种研究所建立起来的新的逻辑。前者是非形式的,后者则是用形式化方法构造的形式系统。恩格尔则把前者叫做“非形式的哲学逻辑”,后者叫做“形式的哲学逻辑”。

二哲学逻辑对象的界定

根据上述对哲学逻辑词义的历史考察,关于哲学逻辑的词义,国外学者是在三种不同的意义上使用的:一是哲学逻辑是哲学,是一门与逻辑有关的哲学学科,它研究由逻辑所引起或,提出的哲学问题;一是哲学逻辑是逻辑,它是与哲学有关的逻辑学科,研究具有较为明显的哲学背景与哲学意义的概念的逻辑问题;一是哲学逻辑既是哲学,又是逻辑。

仔细考究这些关于哲学逻辑词义的不同看法,可知其原因是未能把哲学逻辑与逻辑哲学这两个不同的概念区分开来所致。我们知道,20世纪现代逻辑与现代哲学发展的一个重要特征是两者的相互渗透,由此出现了“哲学的逻辑化”与“逻辑的哲学化”两大趋势,并进而形成了“哲学逻辑”与“逻辑哲学”等新兴的交叉学科。⑦哲学的逻辑化趋势主要表现在现代西方分析哲学和语言哲学的兴起,芬兰最著名的哲学家、逻辑学家冯·赖特在其名著《20世纪的逻辑和哲学》中指出:“20世纪哲学最突出的特征是逻辑的复兴,它是哲学发展的发酵剂。这一复兴是从本世纪开始的。最初以剑桥和维也纳为中心,后来扩大到整个分析哲学运动,这一复兴与之交汇,这是逻辑学登上哲学舞台的标志。”20世纪以来,哲学的主要问题和研究对象既不是本体论,也不是认识论,而是语言问题,哲学研究的一般方法就是语言分析,而语言分析的基本工具就是现代逻辑,因此,在国际哲学界形成了哲学的逻辑化趋势,在这种趋势下,对一些哲学概念进行精细的逻辑分析成为一些学者关注的热点,哲学逻辑也就应运而生。逻辑的哲学化趋势是在现代逻辑的基础上,在对逻辑的哲学反思中形成的,主要表现为对逻辑本身的整体性的哲学思考或研究以及对逻辑特别是现代逻辑发展中的一些具体问题的哲学分析。由于现代逻辑本身是一个不断发展的学科群体,也由于现代逻辑发展中的哲学问题并不是一成不变的,还由于不同的研究者可以有不同的研究视野,因此,逻辑的哲学化趋势是多元的。当哲学逻辑与逻辑哲学刚登上学术舞台的时候,我国年轻学者陈波就密切关注其研究动态,在国内介绍并引进国外学者在哲学逻辑与逻辑哲学研究上的成果,并在一系列相关论著中,明确主张严格区分哲学逻辑和逻辑哲学。

在我看来,哲学逻辑是逻辑,是20世纪20-30年代开始兴起,50~70年代蓬勃发展的一个新兴逻辑学科群体,它们以数理逻辑(主要指一阶逻辑)为直接基础,以传统的哲学概念、范畴以及逻辑在各门具体科学中的应用为研究对象,构造出各种具有直接哲学意义的逻辑系统。逻辑哲学则是哲学,它在逻辑和哲学中都具有自己的起源,因而包括两部分内容:首先,逻辑哲学要研究逻辑学本身所提出的一系列哲学问题,例如逻辑究竟是什么,蕴涵与推理有效性的关系,逻辑真理和逻辑悖论等等;其次,逻辑哲学还要研究如何在哲学研究中引入现代逻辑的工具,利用它去解决传统的哲学争论和哲学难题,例如意义问题、真理问题、存在问题等等。

三哲学逻辑的研究范围

辨析哲学逻辑与逻辑哲学的词义,可知两者有着不同的研究对象,这种不同的研究对象,决定它们有着不同的研究范围。以数理逻辑为直接基础,以传统的哲学概念、范畴以及逻辑在各门具体科学中的应用为研究对象的哲学逻辑,其研究范围包括两大子群,一是异常逻辑(deviantlogic),形式上表现为经典逻辑的择代系统(alternativesystems);一是应用逻辑(appliedlogic),形式上表现为经典逻辑的扩充系统(extendedsystems)。

异常逻辑亦称非经典逻辑(non-classiclogics),它们是相对于经典逻辑而言的。经典逻辑包括命题演算、谓词演算和关系演算,是建立在下述基本原则或假定之上的:(1)外延原则,即它在处理语词、语句时,只考虑它们的外延,并认为语词的外延是它所指称的对象,语句的外延是它所具有的真值;如果在一复合语句中,用具有同样指称的但有不同涵义的语词或语句去替换另一语句或子语句时,该复合语句的真值保持不变。这就是著名的“外延论题”⑧。与此相联系,一阶逻辑是建立在实质蕴涵之上的真值函项的逻辑。(2)二值原则,即在一阶逻辑中,任一命题或真或假,非真即假,没有任何命题不具有真假值。(3)个体域非空,即量词毫无例外地具有存在涵义,并且单称词项总是指称个体域中的某个个体,不允许出现不指称任何实存个体的空词项。4.采用实无穷抽象法,因而在其中可以研究本质上是非构造的对象。凡是因否弃其中某一个原则或假定而建立起来的逻辑理论,都属于异常逻辑。具体来说,这包括多值逻辑、相干和衍推的逻辑、直觉主义逻辑、偏逻辑、自由逻辑、量子逻辑等等。

多值逻辑就是由否弃真假二值原则而建立的逻辑理论,它可以形式定义如下:一个系统是n值的,仅当n是系统的特征模型值的最小数,当然这里的n必定大于2。随着n取大于2的不同值,多值逻辑就有不同的形态。例如,当n=3时,就得到最简单的多值逻辑:三值逻辑。在卢卡西维茨所构造的三值逻辑中,被经典逻辑奉为金科玉律的不矛盾律和排中律不再是普遍有效的规律。三值逻辑还可扩展成有穷多值甚至无穷多值逻辑。将多值逻辑应用于物理学领域,导致了量子逻辑的创立,后者被用来刻画微观粒子的波粒二象性和测不准特性。⑨

相干和衍推的逻辑、直觉主义逻辑都是由否弃实质蕴涵而建立的逻辑理论。在相干逻辑中,用相干蕴涵代替实质蕴涵。A相干蕴涵B,即是说,A与B之间有某种共同的意义内容,使得由A逻辑地推出B,并且这种推出与A,B的真值毫无关系。A与B之间内容上的相干还有其形式表现,即A和B至少有一个共同的命题变元,这就是著名的相干原理。A衍推出B,既要求A与B相干,又要求A与B有逻辑的必然联系,所以衍推逻辑是相干逻辑,又是模态逻辑。在直觉主义蕴涵中,则用直觉蕴涵代替实质蕴涵,A直觉蕴涵B,是指存在某些构造(例如P),把它与A相连接之后能产生B。这就是说,“如果A则B”要求A与B有一定的关系,亦即要求有一个过程,当把这个过程与证明A的过程配合起来之后,可以证明B真。在相干逻辑和直觉主义逻辑中,许多经典逻辑的定理不再成立。

应用逻辑则是利用经典逻辑的工具,去分析某些具体学科特别是哲学中的概念或范畴而建立的逻辑分支。所以冯·赖特说:“哲学逻辑有时定义为运用逻辑分析传统上哲学家所关心的概念的结构。”“我把哲学逻辑描述为构造形式系统以精确阐释我们在某些话语领域内的概念直觉。我认为,本世纪20多年来的发展表明:构造此类系统实际上可以在哲学家传统上感兴趣的任何领域内进行。这些系统可以称为相关领域内的‘逻辑’,例如,时间的逻辑,因果的逻辑,行动的逻辑,规范的逻辑,或者偏好(优先)的逻辑。”

应用逻辑又可以分为三组:本体论的逻辑,认识论的逻辑和伦理规范的逻辑。

本体论的逻辑是以传统哲学本体论的概念、范畴以及相关问题为研究对象的逻辑理论。具体来说,它包括模态逻辑、时态逻辑、存在逻辑、部分和整体的逻辑、莱斯涅夫斯基的本体论、构造主义的逻辑、唯名论唯实论意义上的本体论等等。模态逻辑是关于必然性和可能性的逻辑,或者说,是研究含有“必然性”、“可能性”的命题的逻辑特性及其推理关系的逻辑分支。它分为正规的和非正规的两种类型。一个正规模态命题逻辑系统是经典命题逻辑的重言式集的一个扩集,扩集满足两个条件:

(1)口(pq)(口p口q)在S中有效;

(2)在S中,从有效公式出发,经使用分离规则,代入规则,必然化规则,所得到的仍为有效公式。这里提到的必然化规则是:

若┝a,则┝口a。时态命题是研究时态命题的逻辑特性及其推理关系的逻辑分支,它试图把涉及时间因素的命题之间的推理关系系统化,为涉及时间因素的精确讨论和严格推理提供工具。从形式上看,时态命题逻辑系统T是不同于正规模态命题逻辑的,是经典命题逻辑重言式集的另一种扩集,它满足下述两个条件:

(1)G(pq)(GpGq)和PGPp在T中有效;

(2)在T中,从有效公式出发,经使用分离规则,代入规则和时间性概括规则,所得到的仍为有效公式。

存在逻辑是关于存在及其同类概念的逻辑理论,它研究这些概念的性质,探讨诸如“存在是不是谓词”等问题,这种逻辑归根结底不仅依赖于纯逻辑的思考,而且依赖于本体论的思考。

认识论的逻辑是以传统认识论所研究的概念、范畴为对象的逻辑理论,它们与知识的获得、接受、传递以及对于某一知识的态度例如怀疑、断定、相信等等有关。具体来说,它包括问题逻辑、知道逻辑、相信逻辑、条件句逻辑、内涵逻辑、归纳逻辑(证据、确证、接受的逻辑)等。⑩

伦理规范逻辑:伦理学属于广义哲学的一部分,传统哲学特别是伦理学要研究诸如权力和义务、应该、允许、禁止、需要和要求、决定和选择、动机、效果与行动等概念和范畴。伦理规范的逻辑就是与这一类哲学概念和范畴相关的逻辑理论。

具体来说,它包括道义逻辑、命令句逻辑、行动逻辑、优先逻辑等等。

注:

①罗素:《我们关于外在世界的知识》,东方出版社1992年版,第36页。

②P.F.Strawson:PhilosophicalLogic,OxfordUniversityPress,1967年版,第1页。

③格雷林:《哲学逻辑引论》,中国社会科学出版社1990年版,第17页。

④S,Wolfram:PhilosophicalLogic:AnIntroduction,RoutledgeLondonandNewYork,1989年版,第8页。

⑤陈波:《逻辑哲学》,北京大学出版社2005年版,第10页。

⑥N.Rescher:TopicsinPhilosophicalLogic,D.ReidelPublishingCompany,1981年版,第21页。

⑦胡泽洪:《逻辑的哲学反思》,中央编译出版社2004年版,第34页。

⑧王路:《逻辑与哲学》,人民出版社2007年版,第46页。

逻辑推理的主要规则篇3

[关键词]群体推理,逻辑,群体理性

一、导论

人们通常认为,逻辑是研究推理和论证的规范性的科学。这样的推理和论证是纯形式的,与内容无关的;并且逻辑研究的是纯客观的。逻辑学所得出的逻辑学定律是适合“所有人”的,这里的人是指具有推理能力的理性人。

然而,社会事实是,并非独立地存在许多“个人”,所谓的各个“个人”是相互联系的。这里的联系有多方面的,如生理的、物质的、经济的等等。我们这里关心则是“心灵的”。即:一群人组成的群体被称为一个社会,我们的逻辑是适合该群体中的所有“个人”。存在群体进行推理和论证的逻辑吗?

有人会认为,这样的问题本身是可质疑的。因为,社会虽然是由许多“个体”组成的一个总体,但它毕竟不是如单个人那样的一个“总体”。即社会“总体”本身不是一个自主的像个体那样的单位。这样,没有认知主体,哪来的推理和论证?

认为不存在这样的群体主体的理由是,任何一个群体它本身不说话,它不可能像我们每个人那样思维、表达、论证,甚至争论,除非由一个人说了算的独裁社会,该独裁者“代表”群体的每个人。但一个独裁的社会已经退化到一个人。

的确,确实不存在像单个人的“社会总体”,但这不构成“社会”不能进行推理的理由。对上述反对理由的一个类比反驳是,不存在社会心灵,但同样存在研究群体意识和无意识行为的“群体心理学”。因此,群体推理和论证的逻辑学同样可以存在。

多个人组成的群体或组织的决策与行动方式不同于单个人,它有独特的“规则”。我们不能要求一个群体像一个人那样,否则它就“是”一个人。至于社会的不同于个体的思维、决策过程,正是我们研究的。如,一个群体中“所有人”“知道”“金属导电”,“所有人”“知道”“铁是金属”,那么“所有人”“知道”“铁能够导电”。尽管我们可以用谓词表达式刻画这个推理,但我们将所有人看作一个单位,它便是指某个像个人的单位。再比如,在给定规则下,一个群体要在A、B两个候选对象间表达群体的偏好时,它当然不能或不应该能够得出,“A比B优”并且“B比A优”!再比如,一个群体它不能或不应当做出“从事A”并且“不从事A”行动这两个相互矛盾的决策。前者是关于命题的推理,或者是关于决策或行动的群体推理。

自弗雷格将逻辑学与心理学的研究对象严格区分开来之后,现代逻辑获得了突飞猛进的发展。但逻辑研究的推理和论证是人的许多心理现象中的一种,既然心理学中群体心理学获得巨大的发展,是否存在研究群体推理和论证的逻辑学?

二、从个体认知逻辑到群体认知逻辑

认知逻辑(epistemiclogic)是现代逻辑中的一个分支。认知逻辑刻画认知主体对命题的认知态度(如知道、相信、怀疑等)中的客观过程。如知识逻辑刻画理性的人“知道”的逻辑结构。

逻辑学家发现,刻画群体的认知状态需要新的关于群体的认知逻辑。

博弈论研究有各自目标的两个或两个以上的理性人如何在互动中进行决策。起初,博弈论专家假定博弈中的参与人是理性的——具有使自己效用最大化的推理能力,然而,奥曼(2005年诺贝尔经济学奖得主)等人发现,这样的假定是不够的,我们必须假定,“一个博弈中的每个参与人都是理性的”是该博弈所有参与人组成的“群体”所知道的,即每个人都是理性的是群体中的“公共知识(CommonKnowl-edge)”(或翻译成共同知识)。

什么是公共知识呢?公共知识是相对于某个群体的,某个真命题p是群体G的公共知识,指的是,“该群体”“知道”该真命题p,即CKp。群体知道与群体中的各个成员知道之间的关系如何呢?某个真命题p是群体G的公共知识指的是,群体中的每个成员都知道真命题p(Kip),群体中的每个成员知道他人知道p(KjKip),群体中的每个成员知道他人T他人知道p(KkKjKip)……由此可见,某个命题p是群体的公共知识即群体“知道”p,与p是群体中的每个人的知识即每个人都知道p,是完全不同的两种知识分布状态。

举一个例子。我们假定,对“所有”受过小学以上教育的人来说,他们中的每一个均知道,“4能够被2整除”,即我们假定“4能够被2整除”是所有受过小学以上教育的人的知识;并且我们假定,这也是任何群体的公共知识:如果某个人受过小学以上的教育,他应当知道“4能够被2整除”。对于一个由有限个受过小学以上教育的人所组成的群体而言,“4能够被2整除”尽管是他们的每个人的知识,但不是该群体的公共知识。原因在于,他们均受过小学以上的教育不是该群体的公共知识。很有可能的是,其中有人不知道其他某个人受过小学以上的教育,或者,某人不知道对方知道他受过小学以上的教育……。

所谓公共知识逻辑就是某个群体中的所有人“共同知道”的逻辑。公共知识逻辑其实刻画的就是群体作为一个总体的推理系统,公共知识逻辑有下面这些特征公理:

C1:CK(G,p)p(若p是群体G的公共知识,p是真的);

C2:CK(G,p)∧CK(G,q)CK(G,p∧q)(若p和q是公共知识,p且q也是公共知识);

C3:CK(G,pq)∧CK(G,p)CK(G,q)(若p蕴涵q是公共知识,并且p是公共知识,那么q也是公共知识);

C4:~CK(G,~p∧p)(矛盾式不是公共知识);

C5:CK(G,p)CK(G,CK(G,p))(若p是公共知识,“p是公共知识”也是公共知识)。

C6:~CK(G,p)CK(G,~CK(G,p))(若p不是公共知识,“p不是公共知识”是公共知识)。

对公共知识逻辑的研究是多主体(multi—a-gent)认知逻辑学研究的内容,但它同时是多个学科如计算机、人工智能、博弈论、社会科学关心并研究的内容。

认知逻辑中的公共信念逻辑(commonbelieflog-ic)同样研究群体的推理和论证,在研究群体信念的逻辑中,没有如C1这样的公理,因为信念不必为真。

三、研究群体推理的科学逻辑

科学是理性的活动,但同时是集体性的活动。科学哲学家努力研究科学家的群体推理规则。

那么是否存在适合“所有”科学家的推理规则吗?传统哲学家认为存在这样的东西,这便是“科学方法”,方法论专家的任务即是找到这个方法。这个科学方法包括发现的方法——根据这个方法科学家能够发现真的科学理论和辩护的方法——根据这个方法,某个理论能够得到“证明”。然而,上世纪20年代兴起的逻辑经验主义认为要严格区分发现的范围和辩护的范围。他们认为,不存在发现的方法,但存在辩护的方法。逻辑经验主义试图给出对理论或假说进行归纳辩护的方法。

逻辑实证主义努力给出的归纳证实的方法论标准,以及波普(K.Popper)的演绎证伪的方法论标准,是超科学、超历史的,所有科学家都应当遵守的。

科学哲学中历史主义代表人物库恩则认为不存在这样的方法论标准,任何标准都内在于“范式”,范式是一科学家共同体区别于其他科学共同体的“群体推理规则”。库恩认为,范式是科学活动的基本单位。——所谓范式是科学家共同体共同拥有的东西。在库恩看来,不同的科学家共同体拥有不同的范式。科学的发展表现为范式的变迁。

在库恩那里,科学活动在常规科学时期,科学活动是理性的——理性表现为科学家群体进行理论选择有公认的标准,此时科学家群体对什么样的理论是好的理论、什么是“疑难”等有确定的标准;而科学革命时期,由于没有裸的观察,任何“观察负载着理论”,科学活动没有理性可言——因不同的科学家共同体有不同的理论评价标准,而不存在中立的、客观的评价不同科学家共同体范式的标准。那么在科学革命时期,理论选择是如何进行的呢?根据库恩的观点,此时的理论选择完全是根据科学家的偏好进行的,而偏好是由范式决定的。

库恩努力告诉我们的是,科学家共同体所拥有的范式本身是一套“群体的推理规则”,信仰同一个范式的科学家群体用这样的推理规则进行群体推理;而不同的科学家共同体因推理规则不同(范式不同)而得出不同的结论。

因此,科学哲学家所力图揭示的是科学家进行群体推理的规则,不同的是,“逻辑主义者”哲学家认为,存在不变的规则;而“历史主义者”则认为这样的标准随群体的不同、历史的发展而变化。四、公共选择理论:研究群体选择的逻辑我们每个人在行动选择时;根据自己的偏好在多个行动中选择有利的行动。这是一个推理过程。然而,一个包含两个或以上的行动者的群体或社会是如何做出共同行动或集体行动决策呢?即:群体是如何进行行动选择的推理的呢?

每个人有自己的偏好,群体行动的选择依赖于群体个人的偏好进行“加总”(collect),以形成群体的偏好。对群体中各个人的偏好进行加总是通过投票来完成的。对群体如何加总个人的偏好的研究是公共选择理论的重要研究内容。

群体的投票规则即是群体的偏好形成的推理规则。如,一个群体对某个提案进行表决时,大多数规则——这是一个简单的易于理解的规则——说的是,一个“议案”若获得投票总人数中的一半以上则获得通过,即在此情况下,“该群体”“认为”该议案获得了通过;或者说该群体“认为”该议案通过比不通过要好。若一个“议案”没有获得投票总人数中的一半,在此情况下,“该群体”“认为”该议案不通过比通过要好。

一个议案或者通过或者不通过,此时,投票群体进行投票便是在二中择一。当一个群体面临的候选对象超过两个(即三个或三个以上)时,情况便复杂起来。人们发明了许多加总投票人偏好的方法。如孔多塞的两两相决的规则,逐步淘汰的黑尔体系(Haresystem)和库姆斯体系(Combssystem),一次性决策的赞成性多数(approvalvoting)和博达记分法(Bodacount)。

逻辑主要是研究推理和论证的。若研究的是推理,在推理中存在前提和结论:前提是已知的,而结论要根据有效推理得出的。在群体投票中,我们根据投票者对某个议案的偏好——这构成推理前提,和投票规则——这构成推理规则,而得出投票结果——它便是结论。这样看来,群体加总群体中个人偏好的特定投票规则便是逻辑学中所说的系统,我们称这种系统为群体偏好推理系统。

在实际中存在不同的投票规则,因而存在不同的群体偏好系统。我们考察逻辑系统时,往往考察系统的完全性和可靠性。群体偏好推理系统的完全性和可靠性如何呢?

对于个体,他所用的偏好关系的推理系统满足完全中国整理性和可靠性,或者我们假定它满足完全性和可靠性。研究社会选择的经济学家首先研究理性的偏好关系。偏好关系以“≥(弱优于)”表示。某个理性人认为“a≥b”,表示的是,对于该理性人而言,备选对象a与b相比,a至少与b一样好。经济学家认为“理性的”的偏好关系应当满足完备性和传递性条件:(1)完备性:任何两个备选对象a,b,它们的关系是或者a≥b,或者b≥a,二者必居其一;(2)传递性:对于任意的三个备选对象,如果a≥b,b≥c,那么a≥c。

满足这两个假定的偏好关系的推理系统,如果用逻辑学的术语来说,该推理系统具有完全性——任何两个备选对象都具有一个偏好关系;上面的完备性正是说明了这点;该系统同时具有可靠性——不会产生矛盾的偏好关系;由传递性作保证。一个群体进行推理时,该群体能够做到完全性和可靠性吗?这是下一部分要回答的。

五、群体理性如何得到保证?

群体推理的理性如何保证?

科学哲学家库恩认为,同一个范式下的活动是理性的,因为存在一套为科学共同体中所有人都接受的不相互矛盾的规则体系。此时,科学共同体的理性是能够得到保证的。但在科学革命时期,由于不存在共同接受可以对不同的范式下的规则进行评价的元规则,科学理论之间的竞争是非理性的。这样,不同的科学家群体组成的更大群体的理性得不到保证。

在群体选择中理性是不是也得不到保证呢?

群体的偏好关系推理系统具有完全性和可靠性吗?这个问题涉及到两个方面:第一,群体用于偏好推理的系统能否适合一切可能的偏好组合,这是可靠性问题;第二,该系统进行推理时能否保证不出现矛盾,这是完全性问题。偏好关系推理系统的特性是许多学者所关心的重大问题。

一个极端情况是,加总的规则为独裁规则,即某个人的偏好即群体的偏好,那么将不出现所谓矛盾性的结论。

阿罗证明了,一个群体中的每个人给定偏好顺序的情况下,不可能存在满足下列4个条件并具有传递关系的社会福利函数:第一,定义域不受限制——社会福利函数适合所有可能的个人偏好类型;第二,非独裁——社会偏好不以一个人或少数人的偏好来决定;第三,帕累托原则——如果所有个人都偏好a甚于b,则社会偏好a甚于b;第四,无关备选对象的独立性——如果社会偏好a甚于b,无论个人对其他的偏好发生怎样的变化,只要a与b的偏好关系不变,社会偏好a甚于b不变。

这被称为阿罗不可能性定理。这个定理说明了什么?

这说明了,群体作为总体不可能像个人那样,在任何情况下都能够作出“理性的”排序。孔多塞投票悖论反映的正是这个情况:群体得出了矛盾的结果。

群体投票是群体推理过程,投票规则是群体推理系统。以这样的视角看,阿罗不可能性定理告诉我们,对于有三个以上的备选方案的情况下,群体推理系统不可能既是完备的——适合所有的人的偏好类型,又是可靠的——不出现矛盾性的结论。

逻辑推理的主要规则篇4

一、逻辑的方法

逻辑的方法主要有比较法、分析与综合、抽象与概括。比较法是用以确定客观的事物与现象的相似之处与不同之处的逻辑方法。分析是在思想中分解着一个物体或一个对象,将它的个别部分特征和性质分辨出来;综合则是在思想中把对象的各个组成部分、特征联合起来成为一个整体。抽象是在思维中仅只区分出对象的本质特征,而将其余非本质的、不重要的特征抽象开去的方法,抽象的结果叫做抽象化。概括是在思维中将同一种类的对象的本质属性集中起来,结合为一般的类的属性。抽象与概括是一个统一的、不可分割的过程。一般多用于对概念的学习和理解,如学习等差数列的概念时先给出几组数列:10,8,6,4,2…;2,2,2,2,2…观察这些数列得到共同特点:每个数列相邻两项之差都是相等的。这样就抽象概括出等差数列的定义。

二、逻辑的规律

形式逻辑的基本规律是:同一律、矛盾律、排中律与充足理由律。这些规律是数学证明的基础。

同一律的形式就是“甲是甲”。它的基本内容是:在进行论断和推理的过程中,每一个概念都应当在同一意义上来使用。

矛盾律的形式是“甲不是非甲”。它的基本内容是:同一对象在同一时间和同一关系下,不能具有两种互相矛盾的性质。矛盾律和同一律是直接联系的。“甲不是非甲”乃是“甲是甲”的否定形式,也就是说它们是同一种思想的两种不同表现形式,矛盾律用否定的形式表现,同一律以肯定的形式表现。

排中律的形式是“或者是甲,或者是非甲”。它的具体内容是:同一对象在同一时间和同一关系下,或者具有某种性质,或者是不具有某种性质,不存在第三种情况。

充足理由律的形式是“所以有甲,是因为有乙”。它的基本内容是:特定事物之所以具有某种性质,是因为它有着现实的根据,为一定的先行于它的条件所决定的。这个规律要求在进行思维时,必须有充分的根据,任何判断或论证,只有当它有充足的理由时,才能是正确的、合乎逻辑的,才能具有论证和说服的力量。

三、逻辑推理

逻辑推理是逻辑学习中的主要部分,也是数理逻辑的主要内容,主要有演绎推理和归纳推理。

1.演绎推理

演绎推理是由普通性的前提推出特殊性结论的推理,有三段论、假言推理和选言推理等形式。

三段论指由两个简单判断做前提和一个简单判断做结论组成的演绎推理。由三部分组成:大前提、小前提和结论。大前提是一般性的原则,小前提是一个特殊陈述。在逻辑上,结论是应用大前提于小前提上得到的。运用三段论,前提必须真实,符合客观实际,否则就推不出正确的结论。

假言推理是以假言判断为前提的演绎推理。即在三段论中,大前提是一个假言判断,小前提是一个定言判断,这种论式就叫做假言判断。假言推理体现在反证法中居多。

选言推理是以选言判断为前提的演绎推理。选言推理分为相容的选言推理和不相容的选言推理。相容的选言推理的基本原则是:大前提是一个相容的选言判断,小前提否定了其中的一个选言肢,结论就肯定剩下的一个选言肢。不相容的选言推理的基本原则是:大前提是一个不相容的选言判断,小前提肯定了其中的一个选言肢,结论就否定其他的选言肢。小前提否定除其中一个之外的语言肢,结论则肯定剩下的那个语言肢。

2.归纳推理

归纳推理,就是从个别性知识推出一般性结论的推理,具有从特殊到一般,从具体到抽象的认识功能,所得的结论未必是正确的,但是对于数学家的发现、科学家的发明,归纳推理却是十分有用的。通过观察,实现对有限的资料作出归纳推理,提出带有规律性的猜想。

归纳推理的一般步骤是:通过观察个别情况发生某些相同性质和规律,从已知的相同性质中推出一个具有一般性结论的命题,即猜想。

总的来说,学习简易逻辑,重要的是培养学生的一种逻辑思维能力,教师应该教给他们一种方法和思路,而不是简单地给出答案。

参考文献:

逻辑推理的主要规则篇5

[关键词]人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理

的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]转贴于

“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:

?(Aù?A)

Aù?AB

A(?AB)

(A??A)B

(A??A)?B

A??A

(?Aù(AúB))B

(AB)(?B?A)

若以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。

再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。

在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]

在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦]

美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不少修正和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”

逻辑推理的主要规则篇6

【英文摘要】Philosophicallogicisapolysemantincontemporarylogicalliterature.Webelieveit''''sanon-classicallogicwithphiloso-phicalpurportorcause.Itsrisearosesalotoftheoreticalproblems.Thisessayexpoundsthelimitsofclassicallogic,non-monotonyanddeduction,logicalmathematicalizationanddepart-mentalization,theownershipofinductivelogic,etc.

【关键词】经典逻辑/非经典逻辑/演绎性/数学化/部门化/哲学逻辑classicallogic/non-classicallogic/deduction/mathematicalization/departmentalization/philosophicallogic

【正文】

哲学逻辑的崛起引发一系列理论问题。我们仅就其中几个提出一些不成熟的看法。

一、经典逻辑和非经典逻辑的界限

在这里经典逻辑是指标准的一阶谓词演算(CQC),它的语义学是模型论。随着非经典逻辑分支不断出现,使得我们对经典逻辑和非经逻辑的界限的认识逐步加深。就目前情况看,经典逻辑具有下述特征:二值性、外延性、存在性、单调性、陈述性和协调性。

传统的主流观点:每个命题(语句)或是真的或是假的。这条被称做克吕西波(Chrysippus)原则一直被大多数逻辑学家所恪守。20年代初卢卡西维茨(J.Lukasiwicz)建立三值逻辑系统,从而打破了二值性原则的一统天下,出现了多值逻辑、部分逻辑(偏逻辑)等一系列非二值型的逻辑。

经典逻辑是外延逻辑。外延性逻辑具有下述特点:第一,这种逻辑认为每个表达式(词项、语句)的外延就是它们的意义。每个个体词都指称解释域中的个体;而语句的外延是它们的真值。第二,每个复合表达式的值是由组成它的各部分表达式的值所决定,也就是说,复合表达式的意义是其各部分表达式意义的函项,第三,同一性替换规则和等值置换定理在外延关系推理中成立。也是在20年代初,刘易士(C.I.Lewis)在构造严格蕴涵系统时,引入初始模态概念“相容性”(或“可能性”),并进一步构建模态系统S1-S5。从而引发一系列非外延型的逻辑系统出现,如模态逻辑、时态逻辑、道义逻辑和认知逻辑等等出现。

从弗雷格始,经典逻辑系统的语义学中,总是假定一个非空的解释域,要求个体词项解释域是非空的。这就是说,经典逻辑对量词的解释中隐含着“存在假设”,在60年代被命名为“自由逻辑”的非存型的逻辑出现了。自由逻辑的重要任务就在于:(1)把经典逻辑中隐含的存在假设变明显;(2)区分开逻辑中的两种情况:一种与存在假设有关的推理,另一种与它无关。

在经典逻辑范围内,由已知事实的集合推出结论,永远不会被进一步推演所否定,即无论增加多少新信息作前提,也不会废除原来的结论。这就是说经典逻辑推理具有单调性。然而于70年代末,里特(R.Reiter)提出缺省(Default)推理系统,于是一系列非单调逻辑出现。

经典逻辑总是从真假角度研究命题间关系。因而只考察陈述句间关系的逻辑,像祈使句、疑问句、感叹句就被排斥在逻辑学直接研究之外。自50年代始,命令句逻辑、疑问句逻辑相继出现。于是,非陈述型的逻辑存在已成事实。

经典逻辑中有这样两条定理:(p∧q)(矛盾律)

和p∧pq(司各特律),前者表明:在一个系统内禁不协调的命题作为论题,后者说的是:由矛盾可推出一切命题。也就是说,如果一个系统是不协调的,那么一切命题都是它的定理。这样的系统是不足道的(trivial)。柯斯塔(M.C.A.daCosta)于1958年构造逻辑系统Cn(1〈n≤ω)。矛盾律和司各特律在该系统中不普遍有效,而其他最重要模式和推理规则得以保留。这就开创了非经典逻辑一个新方向弗协调逻辑。

综上所述非经典逻辑诸分支从不同方面突破经典逻辑某些原则。于是,我们可以以上面六种特征作为划分经典逻辑与非经典逻辑的根据。凡是不具有上述六种性质之一的逻辑系统均属非经典逻辑范畴。

二、非单调性与演绎性

通常这样来刻画演绎:相对于语句集合Γ,对于任一语句S,满足下述条件的其最后语句为S的有穷序列是S由Γ演绎的:序列中每个语句或者是公理,或者是Г的元素,或者根据推理规则由前面的语句获得的。它的一个同义词是导出(derivation)。演绎是相对于系统的概念,说一个公式(或语句)是演绎的只是相对于一不定的公理和推理规则的具体系统而言的。演绎概念是证明概念的概括。一个证明是语句这样的有穷序列:它的每个语句或是公理或是根据推理规则由前面的语句得出的。在序列中最后一个语句是定理。

现在我们考察单调逻辑中演绎情况。令W是一阶逻辑公式的集合,D为缺省推理的可数集,cons(D)为D中缺省的后承的集合。我们来建立公式Φ的缺省证明概念:首先我们必须确定从WUcons(D[,0])。导出Φ这种性质的缺省集合D[,0]。为确保在D[,0]中缺省的适用性,我们须确定缺省集合D[,1],致使能从WUcons(D[,1])中得出在D[,0]中缺省的所有必须的预备条件。我们从这种方式操作直至某一空的D[,K]。这意谓着从W得出在D[,K-1]中的必须的预备条件。然后我们确定一个证明,只是我们不陷入矛盾,即是W必须跟包括在证明中的所有缺省后承的集合相一致。例如,给定缺省理论

T=({p},{δ[,1]=p:r/r,δ[,2]=r:ps/pS})

({δ[,2]}),{δ[,1]},Φ是S在T中的缺省证明。

形式地说,Φ在正规缺省理论T=(W,D)中的一个缺省证明是满足下述条件的D的子集合的有穷序列(D[,0],D[,1],…D[,K]):

(i)Φ从WUcons(D[,0])得出。

(ii)对于所有i〈K,从Wucona(D[,i+1])得出缺省的所有预备条件。

(iii)D[,K]=Φ。

(iV)WUcons(U[,i]D[,i])是一致的。

由上面可以看出缺省推理中的证明是与通常的演绎证明是不同的,前者比后者要宽广些。

附图

由此可见,缺省逻辑中的推出关系比经典逻辑中的要宽。因而相应扩大了“演绎性”概念的外延。于是可把演绎性分为:强演绎性和弱演绎性。后者是随着作为前提的信息逐步完善,而导出的结论逐步逼近真的结论。

三、逻辑的数学化和部门化。

正如有人所指出的那样,“逻辑学在智力图谱中占有战略地位,它联结着数学、语言学、哲学和计算机科学不同学科。”[2]作为构建各学科系统的元科学手段的逻辑与各门科学联系越来越密切。它在当展中,表现出两个重要特征:数学化和部门化。

逻辑学日益数学化,这表现为:(1)逻辑采取更多的数学方法,因而技术性程度越来越高。一些逻辑问题(如系统特征问题)的解决需要复杂的证明技术和数学技巧。(2)它更侧重于数学形式化的问题。其实数学化的本质是抽象化、理想

化和泛化(普遍化)。这对像逻辑这样的形式科学显然是非常重要的,近一个世纪逻辑迅速发展就证明了这一点。逻辑方法论的数学化在本世纪下半叶正在加速。这给予逻辑的一些重要结论以复杂的结构和深入的处理,使逻辑变得更精确更丰富。但是,由于逻辑中数学专门化已定型并且限定了它自己,所以逻辑需向其他领域扩张,拓宽其研究领域就势所必然。

逻辑向其他学科领域的延伸并吸收营养,于是出现了各种部门逻辑,如认知逻辑、道义逻辑、量子逻辑等等。我们把逻辑学这种延伸和部门逻辑出现称做逻辑部门化。

哲学逻辑就是逻辑部门化的产物,它是方面逻辑或部门逻辑。众所周知,经典逻辑演算的理论、方法和运算技术具有高度的概括性,它适用于一切领域、一切语言所表达的演绎推理形式。所以,它具有普遍性,是一般的逻辑。有人认为一阶演算完全性定理表明“采用现代数学方法和数学语言来刻画的全体‘演绎推理规律’恰好就是人们在思维中所用的演绎推理规律的全体,不多也不少!”[3]。表达一阶逻辑规律的公式是普通有效的,即是这些公式在任何一种解释中都是真的。而哲学逻辑各分支只是研究某一方面或领域的演绎推理规律,表达这些规律的公式只是在一定条件下在某一领域是有效的,即是它们在具有某种条件解释下是真的。例如,模态公式(D)PP,(T)PP,(B)PP,(4)PP,(E)PP,分别在串行的、自反的、对称的、传递的、欧几里得的模型中有效。而动态逻辑的一些规律只适用于像计算程序那样的由一种状态过渡到另一种状态转换的动态关系。

部门逻辑另一种含义是为某一特定领域提供逻辑工具。例如,当人们找出描述一个微观物理系统在某一时刻的可观察属性的命题的一般形式。对其进行运算时,发现一些经典逻辑规律失效,如分配律对这里定义的合取、析取运算不成立。于是人们构造一种能够描述微观物理世界新的逻辑系统,这就是量子逻辑。

四、哲学逻辑划界问题

哲学逻辑形形并且难于表征。在现代逻辑文献中,“哲学逻辑”是个多义词。它的涵义主要的有三种:它的第一种涵义是指关于现代逻辑中一些重要概念和论题的理论研究。例如,对于名称(词项)、摹状词、量词、模态词、命题、分析性、真理、意义、指涉、命题态度、悖论、存在乃至索引等概念及与它们相关的论题的理论研究以及利用形式逻辑工具处理逻辑和语言的逻辑结构的哲学争论。它的第二种涵义是指非经典逻辑中一个学科群体,它包括模态逻辑、多值逻辑等等众多逻辑分支。它的第三种涵义是兼指上述两种涵义的“哲学逻辑”。

我们认为,第一种涵义上的“哲学逻辑”不是研究推理有效式意义上的逻辑,而是逻辑哲学。我们赞成在第二种涵义上使用“哲学逻辑”一词。于是可以给出下述定义:哲学逻辑是具有哲学旨趣或涉及哲学事业的非经典逻辑,在这里应对“哲学”做广义的理解。哲学逻辑不仅与传统哲学中的概念和论题有直接或间接联系。而且也涉及各门科学中具有方法论性质的问题和其他元科学问题。

在我们看来,“归纳”和“演绎”一样,是传统哲学所关注的重要哲学概念,而且也是现代一些哲学家所争议的问题之一。同时归纳逻辑方法的启发作用在认知过程中不可低估,归纳的一些方法和技术同样是一些学科的元科学因素,是发现真理构建学科系统不可少的。因此,它应属于哲学逻辑。《哲学逻辑杂志》亦把它列入哲学逻辑诸分支之首。

问题在于,归纳推理的复杂性,对它的形式刻画和找出能行程序遇到不易克服的困难,致使其成果与演绎推理所获得成果相比,显得不那么丰硕。然而,由于人工智能等技术上的需要,推动着更多的人研究归纳推理,总会有一天,归纳逻辑也像演绎逻辑那样用形式方法来处理。

【参考文献】

[1]Antoniou,G.:1997,NonmontonicReasoning,TheMITPress,Cambridge,Masschusetts.

更多范文

热门推荐