《有理数的加法》说课稿(整理5篇)
时间:2024-10-07
时间:2024-10-07
教学目的
1、使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算。
2、通过有理数的加法运算,培养学生的运算能力。
教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算。
难点:有理数的加法法则的理解。
教学过程
(一)复习提问
1。有理数是怎么分类的?
2。有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3。有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
—3与—2;3与—3;—3与0;
—2与+1;—+4与—3。
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算。引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算。
(三)进行新课有理数的加法(板书课题)
例1如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法。
为区别向东还是向西走,这里规定向东走为正,向西走为负。这两数相加有以下三种情况:
1、同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和。
5+3=8
用数轴表示如图:略
从数轴上表明,两次行走后在原点0的东边。离开原点的距离是8米。因此两次一共向东走了8米。
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和。
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(—5)+(—3)=—8
用数轴表示如图:略
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米。因此两次一共向东走了—8米。
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和。
总之,同号两数相加,取相同的符号,并把绝对值相加。
例如,(—4)+(—5),同号两数相加
(—4)+(—5)=—(),取相同的符号
4+5=9把绝对值相加
(—4)+(—5)=—9。
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(—20)+(—13)=?
2、异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米。
5+(—5)=0
可知,互为相反数的两个数相加,和为零。
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米。因此,两次一共向东走了2米。
就是5+(—3)=2。
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米。因此,两次一共向东走了—2米。
就是3+(—5)=—2。
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0
例如(—8)+5绝对值不相等的异号两数相加
85
(—8)+5=—()取绝对值较大的加数符号
8—5=3用较大的绝对值减去较小的绝对值
(—8)+5=—3。
口答练习
用算式表示:温度由—4℃上升7℃,达到什么温度。
(—4)+7=3(℃)
3、一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5。结果向东走了5米。
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(—5)+0=—5。结果向东走了—5米,即向西走了5米。
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数。
总结有理数加法的三个法则。学生看书,引导他们看有理数加法运算的三种情况。
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加。
每种运算的法则强调:
(1)确定和的符号;
(2)确定和的绝对值的方法。
(四)例题分析
例1计算(—3)+(—9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(—3)+(—9)=—12。
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值。。(强调两个较大一个较小)
解:解题时,先确定和的符号,后计算和的绝对值。
(五)巩固练习
1、计算(口答)
(1)4+9;(2)4+(—9);(3)—4+9;(4)(—4)+(—9);
(5)4+(—4);(6)9+(—2);(7)(—9)+2;(8)—9+0;
2、计算
(1)5+(—22);(2)(—1。3)+(—8)
(3)(—0。9)+1。5;(4)2。7+(—3。5)
1.教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。
另一方面,课本知识的传授是符合学生的认知发展特点的。在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的'加法法则,并能正确运用。
能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。
2.重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。
2.2教学难点:异号两数加法的实际意义及法则的归纳。
3.教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。
4.教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。
说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。
4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。
[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?
设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。
教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。
预计困难:
①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。
②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。
处理方法:
①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。
②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。
③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。
教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。
4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。
预先设想学生思路,可能从以下方面分类归纳,探索规律:
①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
②从加数的不同数值情况(加数为整数;加数为小数)
③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。
4.4注重反思,让学生的思维“深”下去
[反思应用1]例1:计算(—3)+(—9);(—4。7)+3。9;
[反思应用2]例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?
设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化。这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题。培养学生的“数学化”意识。
4.5拓展应用相结合,让学生的思维得以升华
[练习1]计算15+(—22);(—13)+(—8);
[练习2]用算式表示下列结果:
⑴温度由—4C上升7C⑵收入7元,又支出5元
[练习3]火眼金睛找错误:
文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在()
A.文具店B。玩具店C。文具店西边40米处D。玩具店西边60米处
C组:①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数
为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,—4,+13,—10,—12,+3,—13,—17
⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?
⑵若汽车耗油量为0。4升/千米,这天下午汽车共耗油多少升?
设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要。A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力。
教学设计的说明
布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构。我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的。
《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的。我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡。
弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人。
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
【目标预览】
知识技能:
1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。
数学思考:
1、正确地进行有理数的加法运算;
2、用数形结合的思想方法得出有理数加法法则。
解决问题:能运用有理数加法解决实际问题。
情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。
【教学重点和难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。
【情景设计】
我们来看一个大家熟悉的实际问题:
足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:
(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)
(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)
这里,就需要用到正数与负数的加法。
下面,我们利用数轴一起来讨论有理数的加法规律。
【探求新知】
一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?利用数轴演示(如图1),把原点假设为运动起点。
两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①
利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?
(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?
(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?
(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?
总结:依次可得
(2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
(5)5+(-5)=0⑤
(6)(-5)+5=0⑥
(7)5+0=5或(-5)+0=-5⑦
观察上述7个算式,自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
【范例精析】
例1计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)+(-9)(两个加数同号,用加法法则的第2条计算)
=-(3+9)(和取负号,把绝对值相加)
=-12.
例3足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。
解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(-4)=-2;
蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;
【一试身手】
下面请同学们计算下列各题:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);
全班学生书面练,四位学生板演,教师对学生板演进行讲评.
【总结陈词】
1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。
2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。
【实战操练】
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.计算:
4.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b______0;
(2)如果a<0,b<0,那么a+b______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b______0.
5.分别根据下列条件,利用|a|与|b|表示a与b的和:
(1)a>0,b>0;(2)a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。
有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
(1)在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则。
难点:理解有理数加法法则,尤其是理解异号两数相加的法则。
二、说教法:
在教学过程中一如既往的开展新、行、省、信四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);
行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括)。
上一篇:《梅花魂》优秀说课稿(整理3篇)
下一篇:《盘古开天地》说课稿(整理8篇)
热门推荐