数学思维的训练方法范例(3篇)

时间:2024-11-04

数学思维的训练方法范文篇1

小学数学教学发散性思维素质

小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看做一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。

因此,在小学数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。同时也是数学教学改革的新视角,是进行数学素质教育的突破口。我主要做了以下探索。

一、激发求知欲,训练思维的积极性

思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基础。在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高昂的情绪从事学习和思考。

例如,在二年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是二年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一连环接一连环地发现问题、思考问题、解决问题。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方面来看,从而使学生的学习情绪在获得新知识中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

二、转换角度思考,训练思维的求异性

发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,从而从多方位多角度――即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不于已有的思维定势。

三、一题多解、变式引申,训练思维的广阔性

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,及增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学接过的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

数学思维的训练方法范文

【关键词】小学数学数学教学创造思维能力

创造教育是开发人的创造能力,培养创造型人才的教育。创新能力是21世纪合格人才最重要的素质。在即将到来的21世纪,国家的综合国力和国际竞争能力将越来越取决于教育发展,科学技术和知识创新水平。实施创造教育是现时代教育的主旋律,是素质教育的重要任务。

数学是思维的体操。在数学教学中培养学生良好的思维品质,特别是创造思维能力是素质教育的一项重要内容。在课堂教学中,教师要主动地发展学生的思维,适时地培养和训练学生的创造性的思维能力。创造性思维是一种思维形式,是指人在实践学习活动中,根据自己的目标展示出来的一种主动的、独创的、富有新颖特点的思维方式,它是在原有经验材料和学得知识的基础上进行合理性和突破性的创造组合,形成新的概念或新成果。对于小学生来说,一条新颖的解题思路,编一道应用题,小发现,小创造等都是创造性思想的结果。

1运用学习的迁移,培养学生思维灵活性

迁移是一种学习对另一种学习的影响。学生的学习多为有意义学习,都是在原有知识的基础上进行的。这其中必然包括学习的迁移。在小学数学教学中,要科学运用学习的迁移,加强对学生的基础知识和基本技能的训练,培养学生思维的灵活性。

培养小学生思维灵活性的最简单的办法是求多解练。小学数学教学要适应数学教学的实际,提高学生一题多解、一题多变、同解变型和恒等变型的能力。以一题多解为例,从各种规律中找出规律,便能举一反三。作为教师要精选例题,按类型、深度编选适量的习题,再按深度分成几套,进行一题多解的训练,启发学生积极思考,活跃学生思想,进而发展学生思维的灵活性。

例如,在六年级应用题综合复习教学中出示题目:王师傅原计划16天生产零件900个,结果4天生产了360个,照这样可以比原计划提前几天完成?教师提问:"你可以从哪些不同角度来解答这道题呢?"鼓励学生多角度思考,全方位审视结果,学生发现有多种解法:①归一法解:15-900÷(360÷4);②比例解:设实际X天完成900/X=360/4,设提前X天完成900/(15-X)=360/4,③分数法解:15-4÷(360÷900);④倍比法解:15-4×(900÷360);⑤方程解:设可提前X天完成360÷(360÷4)+X=15。这些解法,使学生沟通了比例,归一、倍比、方程等知识间的联系,起到了活跃学生思维的作用。由此可见,只有科学运用学习的迁移,才能更好地培养学生思维的灵活性。

2转换角度思考,训练思维求异性

发散思维活动的展开,重要的一点是要能改变已习惯了的思维方式,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方式,也就是说学生个体的思维方式往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如24-6可以连续减多少个6等于0?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作24里包含几个6,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使学生对所学知识进一步掌握,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:二年级数学中又这样一题训练:(1)牛16只,羊比牛多8只,羊几只?(2)牛16只,羊24只,羊比牛多多少只?这两道题目有相似的地方,但意思是完全不同的,经过多次实践,我领悟到:从低年级开始就重视正逆向思维的对比训练,将有利于学生突破已有的思维方式。

3一题多解、变式引伸,训练思维广阔性

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

4转化思想,训练思维的联想性

数学思维的训练方法范文

关键词:新课程;小学数学;培养学生;发散思维

我国传统教育下小学数学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都成为一个固定模式,学生习惯于按照书上写的和教师教的方式去思考问题,用符合常规的思路和方法解决问题,对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力的发展,显然是有些勉强,这样教条似的教学也就很难变学生的"要我学"为"我要学"。由此可见,新课程下的小学数学教师要善于启迪学生的发散思维。而发散思维能力是一切能力的驱动,它是通过对事物的感知、表象进行分析、概括、归纳而获得事物本|的能力。一个人的发散思维能力高低,不仅与知识理论的深浅、年龄有关,而且与思维方式有关,因此,在数学教学中,学生思维能力的培养尤为重要。那么,如何在小学数学课堂中培养学生的发散思维呢?

1.转换思考角度,有效训练思维的求异性

小学数学教学中发散思维活动的展开,重要的一点是要能改变已习惯了的思维方式,而从多方位多角度――即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方式,也就是说学生个体的思维方式往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的;减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系;当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法;加减、乘除、加乘之间都有内在的联系。如28-7可以连续减多少个7等于0?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作28里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使学生对所学知识进一步掌握,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。

2.激发求知欲望,有效训练思维的积极性

教育心理学研究表明,思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。因此,培养思维的积极性是培养发散思维的极其重要的基础。在小学数学教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在小学低段学习"乘法初步认识"内容中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义已经掌握,虽然是二年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示4+4+4+4+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了4+4+4+4+2=4×5-2=4×4+2=2×9……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。在数学教学中还经常利用"障碍性引入"、"冲突性引入"、"问题性引入"、"趣味性引入"等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。

3.借助一题多解,有效训练思维的广阔性

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。例如:"甲绳长6.8米,乙绳长5.6米,两绳平均长多少米?在老师的鼓励和引导下,学生可以给出多种不同解法。例如:

A.(6.8+5.6)÷2;

B.(6.8-5.6)÷2+5.6;

C.6.8-(6.8-5.6)÷2;

D.6.8÷2+5.6÷2

通过比较,学生不仅知道哪种法最优,还加深了对平均问题的认识。让学生进行多种解题思路的讨论,能使学生解题思路敏捷,既达到一题多解的效果,又训练了学生思维的广阔性。在应用题解题中,从多角度进行迁移深化,由此及彼,有利于学生发散思维的训练。当然,教师在教学过程中不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题;要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展;要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

4.运用转化思想,有效训练思维的联想性

更多范文

热门推荐