纳米生物技术学(收集5篇)

时间:2025-10-13

纳米生物技术学篇1

1.1细胞分离与染色

纳米细胞分离技术的出现有助于解决生物医学中快速获取细胞标本的难题。将15~20nm的SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮(PVP)溶液中,利用梯度原理,通过离心技术快速分离所需要的细胞[1]。用这种方法很容易将怀孕仅8周左右的孕妇血样中极少量的胎儿细胞分离出来,通过对其染色体的分析,判断胎儿是否有遗传缺陷。应用纳米免疫磁珠检测早期肺癌患者循环血液中的肿瘤细胞,可以监测肺癌的转移情况[2]。

纳米颗粒也为建立新的细胞染色技术提供了新的途径。段箐华等[3]用联吡啶钌配合物[Ru(Ⅱ)(bpy)3]2+、异硫氰酸罗丹明B(TRITC)、异硫氰酸荧光素等荧光分子标记SiO2纳米颗粒,实现了体外对B淋巴细胞、肝癌细胞、早期凋亡乳腺癌细胞、系统性红斑狼疮细胞的特异性识别。异硫氰酸荧光素标记的SiO2纳米颗粒表面接特异抗体,可用于免疫学检测[4]。

1.2纳米造影剂

无机纳米粒子因其形状、尺寸和组成的不同而具有独特的物化性能,可用作新型生物造影材料,能提供良好的检测信号对比度和生物分布度,提高诊断效率,并有望将现有的解剖学层面的造影技术推向分子水平,即“分子造影”[5-7]。纳米造影剂一般需要3个组成部分:(1)无机纳米粒子核,如金、氧化铁等,用以实现造影增强效果;(2)水可分散的壳层,如聚乙二醇等,用以提高无机纳米粒子核的溶液稳定性;(3)赋予靶向功能的生物活性分子,如蛋白、多肽和抗体等。

高分子修饰的氧化铁纳米粒子,如葡聚糖包裹的超顺磁性氧化铁纳米粒子已被用于临床以提高解剖学层面的磁共振造影[8],也被用于分子造影[9]。传统的检测方法对Ⅰ、Ⅱ期癌症检出率小于15%,使用高磁共振对比度的造影剂能够提高早期癌症的检出率。例如,乳腺癌细胞过度表达人上皮增长因子受体2基因(HER2/neu)[10],将磁性纳米粒子(MNPs)偶联上HER2的抗体赫赛汀,就可以将SK-BR-3乳腺癌细胞检测出来[11]。用MNPs偶联赫赛汀探针还可以测出不同细胞的HER2表达量[12]。同样,可以用偶联了rch24抗体的Fe3O4靶向癌胚抗原来诊断结肠癌[13];用偶联了HmenB1抗体的FePt-Au来靶向成神经细胞瘤细胞(CHP134)过度表达的聚唾液酸(PSA)[14]。合金MNPs,如FePt@CoS2等兼具造影和治疗功能。

FeP@tCoS2纳米粒子被HeLa细胞摄入以后,在癌细胞的酸性环境中释放出的Pt+能导致癌细胞凋亡[15]。SiO2@Fe3O4@Au纳米粒子可以用于磁共振造影和治疗,当其与抗HER2基因抗体偶联后有明显的T2加权造影效果,再加上持续的光照,由金壳产生的能量能将癌细胞杀死,起到治疗作用[16]。

金纳米粒子因为其独特的表面等离子共振效应被用作光学造影剂和传感器[17-19]。利用金纳米粒子的表面易于功能化的特性,El-Sayed等[20]在金纳米粒子表面偶联表皮生长因子抗体(anti-EGFR),使金纳米粒子靶向富集在表皮生长因子高表达的口腔上皮癌HOC313细胞上。与普通上皮细胞HaCaT相比,经表面改性的金纳米粒子在HOC313细胞中表现出了更清晰的造影效果。以壳聚糖为纳米载体的复合微球成功地将包覆的金纳米粒子与药物一同送入细胞核,起到了细胞核给药和细胞核造影的双重功能,实现了金纳米粒子的多功能化[21-22]。

半导体纳米粒子(又称量子点)已经被用作荧光探针,用于细胞标记和光学探针[23-24]。美国华盛顿大学的研究人员用蛋白将一个量子点内核包裹在一个直径为3nm的超薄金壳中,使两部分的光电特性不受彼此的干扰,从而首次实现了将半导体和金属纳米粒子结合在一起而仍能保留各自的功能,量子点可用于荧光成像,金球则可用于散射成像。

1.3纳米传感器和新型纳米诊断技术

虽然对纳米传感器的研究时间较短,但其优点是不容置疑的。由生物大分子构成,利用化学能进行机械做功的分子马达纳米传感器,使其尖端插入活细胞内而又不干扰细胞的正常生理过程,来获取活细胞内多种反应的动态化学信息、电化学信息。如利用ATP酶作为分子马达的纳米传感器能进入人体细胞,完成在人体细胞内监测和药物释放等任务,可以连续监测体内代谢变化,对肺部小血管内NO和CO的监测结果对于高血压和心血管疾病的诊断和治疗具有重要意义[25]。其他的分子马达还包括RNA聚合酶、肌球蛋白和驱动蛋白等[26]。在糖尿病治疗中可将纳米生物传感器置于真皮层检测葡萄糖水平,从而指导给药。斯坦福大学的科学家最近利用纳米科技及电磁效应发明了一种生化传感器,这种传感器可以及早发现癌症的早期症状,利于对患者及时进行治疗。

随着隧道扫描显微镜和原子力显微镜的问世,人们能够在纳米尺度上了解生物大分子的精细结构及其与功能的关系,并动态获取生命信息[27]。利用原子力显微镜可以在纳米水平揭示肿瘤细胞的形态特点,通过寻找特异性的纳米结构改变实现对肿瘤的早期诊断,从而解决肿瘤诊断的难题[28]。

2纳米药物载体和纳米药物

纳米药物与传统的分子药物(molecularmedicine)的根本区别在于它是颗粒药物(particulatemedicine)。广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等。二是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物[29]。

2.1纳米药物载体

实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料有金属纳米颗粒、生物降解性高分子纳米颗粒及生物活性纳米颗粒等[30]。理想的纳米药物载体应具备以下性质:毒性较低或没有毒性;具有适宜的制备及提纯方法;具有合适的粒径与形状;具有较高的载药量;具有较高的包封率;对药物具有良好的释放特性;具有良好的生物相容性,可生物降解或可被机体排出;具有较长的体内循环时间,并能在疗效相关部位持久存在等。

2.1.1抗肿瘤药物载体肿瘤的纳米靶向治疗以纳米粒为载体,将药物或制剂定向于肿瘤部位,可以大幅度提高药物的生物利用率,提高疗效,降低用药量,减少毒副作用,已成为国际肿瘤药物研制中的热点和前沿。

恶性肿瘤周围及其实质有大量的新生毛细血管形成,这些血管通透性高,400~600nm以下的纳米颗粒可穿过血管到达肿瘤组织。Alexiou等[31]在动物模型上用磁性纳米粒负载抗癌药物进行区域动脉灌注,外加磁场定位浓集,发现纳米粒子随血液流入肿瘤部位并渗透到肿瘤组织内,提高了药物的治疗指数。Mu等[32]将生物可降解聚合物PLGA纳米粒、VitaminE、TPGS和抗肿瘤药物紫杉醇混合在一起,药物可较容易地到达肿瘤部位而发挥靶向效应作用。杨凯等[33]在治疗口腔癌颈淋巴结转移灶时,将抗癌药物葫芦素BE装载到聚乳酸纳米微粒上,发现药物可靶向到达病变部位,毒副作用和局部刺激作用显著减小。

恶性肿瘤的纳米粒磁导靶向热疗也是有效的方法,热疗本身可以破坏肿瘤细胞。将磁性纳米粒子经包裹或修饰后选择性地注射到肿瘤部位,然后施加交变磁场,纳米粒子受到交变作用而产热,可提高放疗和化疗的效果。口腔颌面部肿瘤位置相对表浅,是最适合作磁导靶向化疗和磁导靶向热疗的部位。此外,由于纳米脂质体载体具有较好的药物、基因和成影剂包封率,在肿瘤造影成像等方面显示出较好的优势[34]。

2.1.2中枢神经系统(CNS)药物载体血脑屏障对于维持CNS的相对稳定起着重要作用,但其毛细血管连接紧密,大多数药物很难通过血脑屏障进入CNS。因此,如何使CNS药物跨越血脑屏障从血液进入脑内且发挥药效是药物传递系统需要解决的一个难题。纳米粒子作为药物载体,为不能透过血脑屏障的CNS药物入脑提供了新途径。Sun等[35]以聚乳酸为基质,制备了装载异硫氰酸荧光素-右旋糖酐的纳米粒,并将纳米粒用聚山梨酯-80包衣,给小鼠尾静脉注射后发现纳米粒可主动靶向脑组织。Kepan等[36]同时给小鼠注射采用聚山梨酯-80包衣的甲氨蝶呤聚氰丙稀酸丁酯纳米粒子(PBCA-NP),未包衣NP及甲氨蝶呤溶液,通过检测脑脊液及脑组织内药物浓度显示,采用聚山梨酯-80包衣的甲氨蝶呤PBCA-NP能显著提高脑内甲氨蝶呤药物浓度。Petri等[37]研究显示,泊洛沙姆-188包衣的PBCA-NP与聚山梨酯-80包衣的PBCA-NP均能显著提高阿霉素的抗脑肿瘤活性。

Oliver[38]发现,用聚山梨酯-80修饰的PBCA-NP通过血脑屏障的机理,部分是由于载体降解产生的毒性打开了脑血管内皮的紧密连接。Ulbrich等[39]发现,用人血清白蛋白纳米粒子包无跨血脑屏障能力的药物洛哌丁胺(loperamide),并与转铁蛋白或转铁蛋白受体的单克隆抗体OX26共价结合后,能够借助血脑屏障上转铁蛋白受体介导的胞吞作用进入脑组织,产生强烈的抗伤害性药效。将神经生长因子载入表面经聚山梨酯-80修饰的PBCA-NP,注射帕金森病小鼠模型后可在21d内持续发挥抗帕金森病的疗效[40]。抗菌药物环丙沙星(ciprofloxacin)装载入表面修饰了HIV-1反式激活蛋白(TAT)的聚乙二醇纳米粒子,利用TAT能将异源蛋白导入细胞内或穿过血脑屏障的特点,通过检测发现该抗菌药物能被人类星型胶质细胞摄取,此法还可用于使其他抗生素跨越血脑屏障,从而治疗脑部感染[41]。

2.1.3其他胰岛素(insulin,INS)的降糖疗效明显,但普通制剂的INS口服给药不易吸收,且容易被胃蛋白酶、胰蛋白酶和肠激酶等降解,因此目前临床上INS的常规给药途径为注射给药。大量的研究工作证实,口服纳米囊可保护INS不被酶破坏,提高INS的生物利用度,减少用药次数。Mesiha等[42]制备的聚氰基异丁酯丙烯酸纳米粒可将药物作用时间从6h延长至72h,生物利用度更好。Merisko等[43]制得INS纳米粒,通过体外实验证明其有良好的缓释能力。Christiane等[44]用生物聚合物和非生物聚合物复配制得纳米粒子,可将INS包裹在纳米粒子的内核,对INS的包封率可达到约96%,并且实验证明有很好的缓控释效果。纳米药物控释系统还被用来防治血管再狭窄[45]。

再狭窄是冠状动脉经皮腔内成形术(PTCA)后常见而严重的并发症,运用微孔球囊介入导管将纳米粒子自由分散形成的乳状悬浮液置于PTCA部位,可以达到防治再狭窄的效果。另外,载药纳米粒子进入动脉壁后,随着可降解材料的逐渐水解,其内含的药物便缓慢持续释放出来,从而实现药物在动脉内局部定位。用纳米颗粒,包括纳米胶束、纳米脂质体等作为基因转移载体,已引起医学界广泛重视。其原理是纳米颗粒作为载体将DNA、RNA、PNA(肽核苷酸)、dsRNA(双链RNA)等基因治疗分子包裹其中,或者通过静电引力或吸附将治疗分子固定在其表面形成复合物,在胞吞作用下纳米颗粒进入细胞,释放基因治疗分子,发挥治疗效能[46]。

2.2纳米药物

直接以纳米颗粒作为药物的应用之一是抗菌药物。纳米抗菌药物具有广谱、亲水、环保、遇水后杀菌力更强、不会诱导细菌耐药性等多种性能。以这种抗菌颗粒为原料,成功地开发出了创伤贴、溃疡贴等纳米医药类产品。例如,纳米二氧化钛树脂基托材料具有一定的抗变形链球菌和抗白色念珠菌的效果,当树脂基托中抗菌剂的浓度达到3%时,即可达到满意的抗菌效果[47]。郭春兰[48]用纳米银医用抗菌敷料对142例患者的手术切口进行护理,所有切口均无感染并Ⅰ期愈合,同常规使用普通无菌敷贴覆盖切口的方法相比,平均每例的愈合时间提前1.69d。

无机纳米颗粒作为新型的抗癌药物为肿瘤治疗提供了新的思路。Liu等[49]用Gd@C82(OH)22处理荷肝癌的小鼠,在10-7mol·kg-1的注射剂量下能有效地抑制肿瘤生长,同时对机体不产生任何毒性。其抑瘤效应不是通过纳米颗粒对肿瘤的直接杀伤起作用,而是可能通过激活机体免疫来实现对肿瘤的抑制作用。纳米羟基磷灰石在体外对恶性肿瘤细胞产生明显的抑制作用,而对正常细胞作用甚微,可望通过进一步的研究获得一种区别于传统的化疗药物的纳米无机抗癌药物[50-51]。此外,有的物质纳米化后出现新的治疗作用,如二氧化钛纳米粒子可抑制癌细胞增殖[52];二氧化铈纳米颗粒可以清除眼中的电抗性分子并防治一些由于视网膜老化而带来的疾病[53]。

3组织修复和再生医学中的纳米材料

将纳米技术与组织工程技术相结合,构建具有纳米拓扑结构的细胞生长支架正在形成一个崭新的研究方向。相对于微米尺度,纳米尺度的拓扑结构与机体内细胞生长的自然环境更为相似。纳米拓扑结构的构建有可能从分子和细胞水平上控制生物材料与细胞间的相互作用,引发特异性细胞反应,对于组织再生与修复具有潜在的应用前景和重要意义[54]。将纳米纤维水凝胶作为神经组织的支架,在其中生长的鼠神经前体细胞的生长速度明显快于对照材料[55]。向高分子材料中加入碳纳米管可以显著改善原有聚合物的传导性、强度、弹性、韧性和耐久性,同时还可以改进基体材料的生物相容性。研究发现,随着复合物中碳纳米管含量的增加,神经元细胞和成骨细胞在复合材料上的黏附与生长也越来越活跃,而星形细胞和成纤维细胞的活性则呈现同等程度的下降[56-57]。Freites[58]设计的人造红细胞输送氧的能力是同等体积天然红细胞的236倍,可应用于贫血症的局部治疗、人工呼吸、肺功能丧失和体育运动需要的额外耗氧等。Murphy等[59]成功合成了模拟骨骼亚结构的纳米物质,该物质可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模数匹配,不易骨折,且与正常骨组织连接紧密,显示出明显的正畸应用优势。

纳米自组装短肽材料RADA16-I与细胞外基质具有很高相似性,RADA16-I纳米支架可以作为一种临时性的细胞培养人工支架,它能很好地支持功能型细胞在受损位置附近生长、迁移和分化,因而有利于细胞抵达伤口缝隙,使组织得以再生。有研究人员[60]利用RADA16-I纳米支架修复了仓鼠脑部的急性创伤,并且恢复了仓鼠的视觉功能。RADA16-I形成的水凝胶可用作新型的简易止血剂,用于多种组织和多种不同类型伤口的止血。

4纳米中药

“纳米中药”是运用纳米技术制造的粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂[61]。纳米中药不是简单地将中药材粉碎至纳米数量级,而是针对组成中药方剂的某味药的有效部位甚至是有效成分,进行纳米技术加工处理,赋予传统中药以新的功能。

中药纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高生物利用度;利用纳米化的中药所具有的缓释功能和靶向给药功能,在提高药效的同时降低毒副作用;利用中药的纳米包覆技术能改变一些中药制剂的亲水、亲油性,提高临床疗效。例如,用纳米粉碎技术将中药黄芩、黄连、黄柏、地榆超微粒化,添加纳米锌、硒等微量元素,加广谱强效纳米银系(AT)抗菌剂、麦饭石纳米粉、远红外二氧化钛、电气石在传统中药配方基础上制成的纳米中药,用于烧烫伤的治疗,提高了药物疗效[62]。将超临界二氧化碳萃取技术用于中药挥发油提取和中药有效成分的提取,通过包覆技术把中药挥发油和中药有效成分制备成纳米药物。超临界二氧化碳萃取技术已广泛用于对菖蒲根、金丝桃叶、月桂叶、肉豆蔻、苍术、高良姜等的有效成分进行提取和对紫苏、香薷、防风、辛夷、苍术、厚朴、细辛、木香等挥发油的提取[63]。

对中药挥发油采用包合技术制备包合物,用纳米尺度的分子材料(主要是环糊精类)作为载体材料,形成不到2nm的药物超微粒,其内径为0.7~0.8nm,可容纳几个药物分子,这样的包合物又称为分子型包囊[64]。由于载体是种多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内侧可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,提高生物利用度,还可降低药物的刺激性,增加药物的稳定性。药物脂质体制剂在纳米中药的研制中也得到了日益广泛的关注。如纳米雄黄脂质体[65]、辛夷挥发油纳米脂质体[66]、马钱子碱脂质体的研究[67];鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[68]等。

纳米中药的研究和应用仍处于起步阶段,存在许多亟待解决的问题,如纳米中药的药效不确定性及可能的毒副作用、纳米中药的有效成分和稳定性难以控制等。但目前已经取得的一些成果表明,纳米中药的研究极大地丰富了中药的剂型,对中药的研究和开发产生了巨大的推动作用。这方面研究的深入能在纳米中药的制药技术、药效等诸方面建立更多具有自主知识产权的专利技术和创新方法,促进中药制剂的标准化和国际化,提升中药的市场竞争力。

5纳米医学材料的安全性

纳米材料在医学领域已应用于药物载体、癌症治疗、基因治疗、抗菌材料、组织工程、医学诊断等方面,给人类带来了许多好处。然而,有关纳米材料毒理学的报道也很多[69-70]。由于纳米材料具有小尺寸效应、表面和界面效应以及量子尺寸效应等特性,可能引发特殊的生物学效应,给人类健康和环境带来负面影响。例如,Yeo等[71]指出具有抗菌效果的纳米银可在水生环境中蓄积,对斑马鱼胚胎发育有毒性作用。

从纳米医学材料大小与DNA、蛋白质、病毒等生物分子的尺寸相当这一事实很容易想到,即使化学组成相同,纳米物质的生物毒性也可能不同于微米尺寸以上的常规物质[72]。根据常规物质研究所得到的毒理学数据库与安全性评价结果,可能不适用于纳米物质;现有的安全评价方法、技术又都不太适用于纳米医学材料对人体风险评价[73]。这些问题正是目前纳米医学材料安全性评价的困难所在。

纳米材料的安全性评估是一个全球性关注的问题,美国、欧盟、日本纷纷斥巨资展开纳米材料的安全性研究,我国也已将其列入国家“973”重点基础研究规划项目。纳米技术涉及很多学科,如电子、生物、物理、化学等等。因此,对医用纳米材料安全性的评估不是单一的某个学科可以完成的,而是需要临床医学、基础医学、毒理学、物理学、分子生物学、化学和环境科学等多学科的融合,充分利用各种先进的分析技术,开展多学科的综合研究。

6展望

虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪是纳米科技的世纪,人们将以全新的角度和视野看待生物医学问题,在纳米水平上可以更加深入地研究各种组织的结构和功能,并充分发挥其优势。纳米医学技术的发展必将为基础与临床研究带来新的机遇,为现阶段尚不能解决的问题带来新的思路和方法。

纳米生物技术学篇2

关键词:纳米技术;科技效应;科技规范

Re-examinethenano-technology

Abstract:Theroleofnano-technologyinthenatural,human,socialproductionandlifetohumanbeingstocreateagreatdealtotheinterestsandvalues.Nanotechnologyresearchalsoledtoseriousconsequences.Thenaturalenvironmentinthebeginningoftheextinctionofsomespecies,thenewenvironmentalpollution,amoreseriousecologicalimbalance;humanenvironmentpeoplelosethemselvesandindifferenttolifeandtheplightofinter-generationalethics;thelossofpersonalsenseofbelonging;socialenvironmentofpeacehavebeendestroyedandtheinformationsecuritybethegreatestchallengehasbeentosubverthumancivilization.Intermsofsustainabledevelopment,humanitarian,justiceofthesocialcontracttoguidenanotechnologyresearchasmuchaspossibletoavoidnegativeeffects.

Keywords:nanotechnology;technologyeffect;technologyspecification

引言

纳米技术是指在纳米(namometer)尺度上(百万分之一毫米,近似于一根头发丝直径的千分之一,一个普通病毒的百分之一大小),利用纳米粒子小尺寸小体积、表面效应,量子隧道效应(微观粒子所具有的贯穿势垒能力的效应,微观量子如磁化强度量子相当于器件中的磁通道),超双亲与超双疏远效应(表面吸引的相吸相斥,或相抵消相溶的特殊性质)等的特性,探索包括原子、分子在内的特性和相互作用,并根据这些物质的的物性的和相互作用效果与其他学科配合,研制成各种具有人类想要的功能或形状的产品的科学技术。纳米科技的开发使得采用其加工过的产品达到人的预定目的。这种特殊技术可以极大的满足社会生产、生活的实际需要。可以说是继蒸汽机革命、电机革命、控制论原子能电子计算机革命之后最具说服力的新技术革命,是人类适应自然、改造自然、更好的认识自然以揭示自然本质和规律的有力工具!正如1959年诺贝尔获得者理查德•费曼的判断“如果我们(人类)对物质微小规模上的排列加以某种控制的话,我们就能使物质具有某种可能的特性”。纳米技术真正实现了人类生产方式的飞跃。许多国家在纳米技术研究上大规模的投资,努力应用这种技术创造更大的价值。来自微纳电子技术的消息,2008年,Alberta的先进微系统和纳米技术产品研究中心(ACAMP)总共获得了1150万美元的资助金,今后每年的商业活动费用均将达到200亿美元。

纳米技术应用成果引发了各界对这项高技术的重大关注,纳米技术的社会影响力在正在扩大延伸,作用在人、自然、社会上的结果表明,这种高技术在带来正面的效益价值的同时也会对人、自然、社会产生负面影响。

一.纳米技术对自然、人、社会正面影响

人类发明了纳米技术就是为了作用于自然、人、社会,使他们的性状、功能在更大程度上符合人类生产、生活的要求。

(一)纳米技术改造自然

1.丰富自然物种

一方面,在生物界。2004年,美国纳米技术研究会公布成果显示,科学家已经能够应用纳米技术深入某些物质内部,创造新的生物,成为纳米层次基因工程实践有效的例证。科学家采取纳米显微的方式移动果蝇染色体的基因,结果培育出了新的“果蝇”,这种新型的“果蝇”已经在许多根本的性状上与普通果蝇的性状分离,包括觅食、生活习惯、神经系统等,所以可以被定义为一种新的生物种;另一方面,在非生物界。2008年,来自北卡罗来纳州大学(NCSU)、亚利桑那州大学(ASU)和马德里康普斯顿大学的研究人员研究出了一种快速简便的方法,即采用胶体化学方法把悬浮的纳米微粒烘干到超疏水表面上来制作出具有绚丽色彩的粒子,可与自然形成的矿石的纯度和精细度相媲美。研究人员称这种微粒为“纳米宝石”。“纳米宝石”是纳米技术丰富非生物种的一个成功先例。

2.提高能源利用率

纳米粒子小体积小尺寸的表面效应,使得粒子直径为10nm时表面原子数为原来粒子原子总数的20%,当粒子直径为1nm时,粒子表面原子为原来粒子原子总数的99%。也就是说,当粒子直径减小到纳米尺寸大小时,表面原子数一定会大量增加,这样就使减小到纳米粒子大小的粒子表面吸收能力迅速增加。总结起来,纳米大小粒子的吸附能力一定是极强的。一个经典的实验可以证明,黄金被分割到小于光波波长的尺寸时就会失去原有光泽,表面呈黑色,其他的如铂、铬都具有此种特性。超小粒子把光吸附住以实现内外能量平衡。这个特性被用作吸附太阳能转化成光能电能的工具,解决了长期以来人类被能源利用率和利用能源的渠道问题困扰的状况。

3.提高元素回收利用率

一方面,在吸收利用上,自然界现存的蛋白质、脂肪、膳食纤维等营养成分是人和其他任何生物的生存发展所必需的。人类一直致力于如何从自然界中提取更多可为人采集利用的这些营养元素。但是这些极其有用的元素都是分子结构的,分子结构大颗粒物质在水中的溶解度特别低,因而被消化和吸收的水平就更低。将大分子降低到100-1000纳米之间就可以解决这种问题。现在研制成功的,比如,纳米化氨基酸、纳米钙,使得氨基酸和钙可以被人体有效吸收。实验证明,施过纳米化肥的植物生长要比同类生物快且产品质量高;经过了纳米技术处理的纳米骨头更符合小孩和老人的消化要求;另一方面,在回收利用上。水污染是科学家工作重点。2008年,美国加州大学亨利萨缪里工程和应用科学学院宣布,能用于海水淡化和废水回收的纳米反渗透膜在美研制成功。膜上的孔让水分子穿过,留下盐分和杂质,从而做到对海水的淡化和净化。回收到的盐分和杂质可以被重新利用。

(二)纳米技术改造人

1.促进人的基因优化

纳米技术可改变生物基因组成。通过给原始基因组添加或剪切某些基因片段就可以改变生物的性状和功能,并可以使这种基因的变更遗传下去(前面论述过的果蝇基因工程),当这种技术应用于人类时,同样有效。特别在生物医学方面,纠正某些基因组合上的不合理可以有效的防止病毒入侵。人类清楚地知道基因决定遗传和变异,传统方法确认基因异常引起的疾病只在单个基因携带信息上进行研究。应用纳米技术可以调整因基因组成上的漏洞和因时代变迁所有环境因素带来的人本身抗病毒基因的不足。几年之内人类医学将进入人化医学时代,对病人情况的诊断、治疗、和处理将更快更有效,更简单更可靠,并根据个人独特的基因图谱进行细微处的调整,构建最优的基因模式。生物医学纳米技术在改变人类基因组成上发挥着巨大作用,特别地,对于那些“孤生类疾病”(仅仅影响人群中小部分人的习惯性或致命性疾病,发病率低于1∕2000,病因往往来自基因)的受难者有决定性的意义。这种生物医学纳米技术是符合优生学理念的,优化了的基因组织会使人类适应能力大大提高。

2.延长人的生命周期

一方面,针对可能病变的因素,人们应用生物医学纳米技术可以充分了解体细胞的DNA、RNA和蛋白质的变化,做到病理早期诊断、早期治疗。D.C.Guttridge发现肌细胞需要一种称为miR-29的分子以达到成熟状态。横纹细胞中含有可阻止miR-29被激活的蛋白(NF-KB蛋白)。人工提升横纹肌肉瘤中miR-29水平将使癌细胞增值减半,并促使它们成熟,减缓肿瘤生长这种技术可以应用到其他隐性的疾病因素中,使人类也可以提早靶向根治恶性肿瘤;另一方面,利用纳米粒子追踪完全监测人体记录所有体内环境活动。这对于钻研病毒细胞等不利于人的细胞在人体内的活动情况非常有用。科学家通过把某种纳米粒子“粘”在生物分子上,然后利用纳米粒子的吸收微弱能量的发光性能研究生物分子的活动情况。比人体细胞小得多的纳米粒子可以被送进人的组织、器官内,借用微光对体内照射,这样可以达到追踪病毒和不利于人的粒子及修复人体环境的目的。结合以上两方面,人不再会有任何发病的可能,并且体内环境始终保持在最佳状态,从而延长人的生命周期。

3.提高人对器官的能动性

纳米级的克隆技术是一种采用人工手法进行基因的复制,通过复制客体本身的每一个细胞和基因,制出表面和内部构成都与原型完全相同的新客体。目前这种纳米技术的重点转向了克隆人体局部性征,如器官、功能性细胞等,它的原理是利用纳米级粒子模仿受体的原本性状,还原其本来面目,建构新的具有所需功能的人机体部件,以修理病变器官或更换更方便人类支配并会产生预定功能的器官,以完成替代的目的。纳米技术材料的最大优点在于,得益于其单位的小体积、小表面积,因而不会被人体排斥。纳米克隆技术引发了新的复制热潮。在这项技术下研制成功的纳米结构材料最常见的是人工骨、人工眼球、人工关节。现在国际上最先进的整容术就是纳米克隆人体器官的实际应用之一。通过纳米粒子组合,既可以直接植入假体也可以注射凝胶形成纳米纤维,补全原来器官部件。这样技术可以使人自由选择补充原来缺少或不满意的部位,极大的扩展了人自由选择的范围,可以解决有些人天生缺陷造成后天不平等的问题,给人极大的心理安慰。

(三)纳米技术改造社会

1.提高战争效率

一方面,提高武器系统性能。现代纳米技术应用于军事重点在于利用微机电系统实现武器装备袖珍化,以替代原先的武器装备使武器的体积、质量、功能成千倍的提升,体现了高技术武器杀伤效能高、命中准确度高、智能化高、作战反应速度快、战场机动能力强的特点。①纳米技术加入军事将引发武器装备的变革。美国新研制的纳米超黑粉可达到对雷达波99%的吸收率,实现战斗武器在地面监测中的隐身。空军F117A隐形战斗轰炸机的表面涂有多种纳米级的吸波材料,能够吸收雷达波使对方的地面防空探测雷达几乎变成“瞎子”。由此,战斗时间缩短从而极大地提高了战争效率;另一方面,士兵生命安全有了一定的保障。应用纳米技术可以制备各种有防御功能的装备,NanocompTechnoloqies与美国马萨诸塞州陆军纳太科士兵中心合作开发碳纳米管专利技术以增强防弹衣性能。这种防弹衣的重量是原来的几千分之一,性能是原来的几千倍,这样士兵生命安全有了更进一步的保障。

2.加快社会信息化步伐

一方面,从微观角度看,有科技文献证明,利用纳米粒子超双亲与超双疏远效应可使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理运算和显示等方面使得光电器件的性能大大提高。将纳米技术用于现有雷达信息处理上,可使其能力提高十倍至百万倍。也就是说,纳米信息传输材料会使原有的信息传播准确度和速度大大增加。由此,不仅完善更新了电子网络空间效率还保障了信息的内在有效性;另一方面,从宏观角度看,纳米粒子小尺寸、小体积特性使得电子器件不断地向微型发展。车载广播或电话都可以隐藏在车有手机制造商。利用65纳米MobileStationModem(MSM)芯片组制造多款3G手机支持高速数据能力和先进的服务。3G及3.5G手机强调体积轻薄短小,更加省电力等性质。纳米电子信息技术提高了人们查找确认信息资讯能力。实现人与信息交流零距离,使信息工具和信息资源越来越广泛越来越充分地社会里利用,达到人对信息的全部控制。按照信息科学家钟义信的定义,纳米技术这方面应用会加快社会信息化步伐。

3.促进社会生活各方面发展

现代社会人们讲究快捷、舒适、方便、高效。纳米技术的出现并应用满足了这种需求。一方面,人体机能的社会化。所谓人体机能的社会话更新是指,人体机能也紧跟社会发展的步伐,把人的自然属性与社会属性充分结合,充分体现当代社会文明。其中就包括科技文明。比如,在体育竞技上,完全的体制较量开始偏离科技时代文化特质。Adidas就把以前仅用于汽车和航天宇宙产业的材料用于设计一款碳纳米管增强的更薄更结实,具有更高的抗扭性全掌板(纳米板)。使运动员感到更稳健、更舒适、更安全,在增加柔性的同时可减少能量损耗。纳米技术和人的技术结合可以使人创造出更新的记录;另一方面,社会的智能化。为了实现人们在社会上更高效的生活,人们正在采取科技手段改变原始的人与社会的这种生活环境。2008年1月12日,日本开发出一款名叫SASY的可以模仿人类的各种行为的机器人女秘书。这种机器人全面采取了纳米技术,具有仿真的人体结构和高智能的机器头脑,极大方便了人们的生活。

二、自然、人、社会受纳米技术影响的负面意义

自然、人、社会受到纳米技术的作用,由于本身已经具备了约定俗成的内在规范和进化变更的方式,因此会产生对纳米技术直接影响的对象或方式关系的反作用。

(一)自然受纳米技术改造结果

纳米生物技术学篇3

关键词:纳米技术;食品科学;应用

一、纳米技术

自从上个世纪90年代出现纳米技术后,在纳米技术领域的新概念、新名词、新材料不断涌现,使得人们对纳米技术的理解不够透彻,对其研究也处于初级阶段。其实,纳米技术是一门基础研究与应用研究多学科交叉的科学,不管是在原子、分子或者是在超分子角度上对其分析,纳米技术都堪称是一项新的、空前的技术创新,对今后物理学的发展起着重要作用。纳米技术的目标主要是根据纳米结构所具有的特性和功能,结合人们的需求,对材料进行加工,并制造具有特定功能的产品,给人们带来全新的技术革命。此外,在设计过程中在原子、分子的水平上运用纳米技术进行材料设计,进而制造出具有全新性质和各种功能的材料,从而满足人们日益增长的生活需求。

二、纳米食品的概述

所谓纳米食品,指的是在食品加工、生产或包装过程中采用了纳米技术手段的食品。但是,纳米食品不仅仅是采用纳米技术将食品的尺寸加工至纳米级别,也涉及到通过纳米技术对食品进行了改造从而改变食品性能的食品。从而使经过纳米技术加工的食品在营养、吸收等方面会很大的提高,在这方面应用最广泛主要有维生素制剂、钙、硒等矿物质制剂、豆奶与纳米添加营养素的钙奶茶等。但是,由于人们对纳米技术研究的局限性决定了纳米食品也存在一些问题,从而使得纳米食品的安全日益受到人们的关注。因为,在纳米食品生产过程中主要采用球磨法使食品的尺寸变小而达到纳米级别,从而不可避免地产生粉料污染,同时,纳米技术给食品所带来的危害与不利影响等,目前我们还无法预测,难以判断纳米材料是否对人体有害。目前,我国乃至国际上的纳米食品行业还没有形成一个统一的、有效的标准,无法对纳米食品进行安全性评价,也不利于食品健康的管理与监控。此外,据研究部分纳米食品存在一些有害成分,采用球磨法对食品进行加工,所制备得到的纳米粉末更容易进入细胞甚至细胞核内,进而对人体所产生的危害也没有研究清楚。

三、纳米技术在食品科学中的应用分析

1.微乳化技术和纳米胶囊制备技术

所谓的微乳液,就是通过将两种互不相溶的液体形成的吉布斯自由能最小、状体均匀并且稳定,各向同性、粒径大小为l~100纳米、外观透明或半透明的分散体系,而制备该微乳液的技术也称为微乳化技术。自从上个世纪末以来,人们加大对微乳理论和应用的研究,并将微乳化技术已应用于纳米颗粒、微胶囊和纳米胶囊的制备。采用纳米技术,将微胶囊制备成具有粒径大小在10~1000纳米尺寸的新型材料。由于纳米胶囊颗粒微小,形成胶体溶液,易于分散和悬浮在水中,并形成清澈透明的液体,从而使所载的药物或食品功能因子改变分布状态而浓集于特定的靶组织,进而有利于提高疗效的目的,增加药品生产效率。

在食品包装行业,纳米技术的应用最为普遍,并且该技术能给人们带来极大的利益。因为,在包装材料过程中,只需加入一定的纳米微粒就能够有效地增加包装材料的抗菌性能与密封效果,从而更好地为食品包装提高质量安全保障。同时,在冰箱制造行业也能看到纳米技术的应用情况,通过纳米技术能够有效地生产出一些抗菌性的冰箱,从而满足人们日常生活需求。此外,由于纳米材料的尺寸微小(纳米级别),并体现出特殊的功能,在食品包装过程中加入一定的纳米微粒有利于改变对现有包装材料的性能,从而进一步保证食品的安全。甚至已有不少人研究纳米技术在玻璃和陶瓷容器等领域的应用,通过加入纳米颗粒,可以有效地增加了脆性材料的韧性与强度,还可以有效地吸收紫外线防止塑料包装由于时间过长而出现老化、变质等现象,进而增加食品包装的使用寿命,促进食品包装行业的发展。

2.纳米技术在超细微粒和纳米粒子制备中的应用

在当今的高新技术研究领域中,超细微粒尤其是纳米粒子已经成为人们研究的热门方向,并是当今急需加大研究投入的领域。经过超细化处理后的物质,粒子之间的接触面积增大,比表面积也大大增加,界面能显著提高,表面能会发生巨大变化,从而显现出独特的物理与化学性能。通常情况下,制备超细粒子的方法为超细碾磨法,例如市场上比较普遍的具有强抗氧化性的超细绿茶粉与具有强结合水能力的超细面粉等。研究表明,粒子越小越有助于人体的吸收消化,约1000纳米的超细绿茶粉呈现出较好的营养消化和吸收率,其营养价值大大超出普通的绿茶粉。又近年来迅速发展起来的新技术――超临界流体制备超细微粒技术,也属于纳米技术制备超细粒子的范畴,该技术可以较准确地控制结晶过程,对粒子尺寸进行精确的控制,从而生产出的超细微粒粒径小且粒度分布均匀,该技术在医疗药物制造行业较为普遍,具有诱人的应用前景。

3.纳米技术在食品检测中的应用

随着计算机技术的飞速发展,使得纳米传感器技术也得到了惊人的发展,并已在食品安全监测中得到广泛的应用。所谓纳米生物传感器技术,采用选择性结合靶分子的生物探针,对食品进行安全监测的技术。因为,纳米材料本身就是非常敏感,对于不均匀的生物与化学物质反应灵敏,将纳米技术与生物学、计算机技术、电子材料相结合,可以制备新型的传感器件,并提高食品安全监测效率。例如与生物芯片等技术结合,可以使分子检测更加简便、高效的纳米生物传感器。近年来,人们通过纳米生物传感器技术可以实现对食品安全、临床诊断与治疗的快速、有效、灵敏地检测。例如,在传统的检测领域,尤其是监测微量细菌时需要扩增或富集样本中的目标菌,从而无形中增加监测步骤,同时过程繁琐而费时费力,然而,利用纳米技术与表面等离子体共振、石英晶体微天平等研制而成的纳米生物传感器,不仅能够大大减少检测所需的时间,还可以提高检测的灵敏度,进而提高监测效率与精确度。

四、结语

综上所述,由于纳米材料发展比较晚,各方面的研究还不够完善,纳米技术也存在一些不足和缺陷。但是,这并不影响纳米技术在食品工业中的应用,随着人们对纳米技术研究的不断深入,我相信在不久的将来纳米技术将会引发一场新的食品科学的革命,为食品行业带来巨大的经济效益与发展空间,也会使人们的饮食结构和生活方式发生巨大的变化,引领人们走进一个全新的食品行业,进而提在很大程度上提高人们的生活水平。

参考文献:

纳米生物技术学篇4

纳米。微米是长度单位。1微米相当于1米的一百万分之一。纳米也是长度单位,原称毫微米。1纳米相当于10的负九次方米(10亿分之一米),即10的负六次方毫米(100万分之一毫米)。相当于4倍原子大小,比单个细菌的长度还要小的多。

纳米技术:

是用单个原子、分子制造物质的科学技术,研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是动态科学(动态力学)和现代科学(混沌物理、智能量子、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

(来源:文章屋网)

纳米生物技术学篇5

【关键词】纳米技术;纳米中药;剂型改造;研究进展

纳米科学技术(Nano-ST)是20世纪80年代末期刚刚诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(

10-9~10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子,创制新物质[1]。药剂学领域中纳米粒子的研究早于“纳米技术”概念的出现,70年代就已经对纳米脂质体、聚合物纳米囊和纳米球等多种纳米载体进行了研究。目前,我国中药剂型的老化、单一,是中药制剂难以打入国际市场的重要原因之一,同时,由于我国中药提取工艺及设备落后,限制了中药临床疗效的提高。充分利用现代科技手段,使中药具有先进的生产工艺和现代剂型可能是现代中药发展的重要方向之一。

1纳米中药

徐辉碧等[2]认为“纳米中药”是指运用纳米技术制造的、粒径

2固体分散技术和固体分散体

这是应用纳米技术分散水溶性药物在载体中,以增大药物的溶出-吸收,提高药物生物利用度比较典型的新技术、新剂型,近年来已被大力研究推广,还被应用与水溶性或水难溶性制成缓、控释的固体分散体。固体分散体中的水难溶性药物是以微粒、微晶或分子状态分散在易溶于水的固体载体中。若选择载体、制备方法得当,药物与载体的比例合理,制得的固体分散体中的药物分散的粒径均

3包合技术和包合物

包合技术应该完全属于纳米技术的范围,也是一种纳米药物粒子的制备方法。包合技术所采用的载体材料,本身就是一种纳米尺度的分子材料。已被选用的主要是环糊精类,有α,β和γ型三种,目前还有它们的衍生物。这三种环糊精分别由6、7、8个葡萄糖分子组成,都具有筒状结构。其中β-型的结构,由7个葡萄糖分子环合而成筒状,内径为0.7~0.8nm,可容纳几个药物分子,形成不到2nm的药物超微粒,这样的包合物又称为分子型包囊。由于载体是种多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内侧可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,从而提高生物利用度,还可降低药物的刺激性和增加药物的稳定性以及用于一些液体药物的粉末化。中药挥发油应用包合技术制备包合物的研究报道较多,是包合技术在药学上应用的最好例子。如维感颗粒中挥发油β-环糊精包合物制备及稳定性研究[6];益智挥发油β-环糊精包合物的稳定性考察[7]等。

4毫微囊

20世纪70年展起来的毫微囊包裹技术是一种纳米级包裹技术,在中药研发中引进该制剂技术对中药现代化意义重大。毫微囊的粒径范围一般为10~100nm,其优点在于[8-10]:所用包裹材料便于进一步表面修饰,以达到主动靶向的目的;一般成品稳定性较好,便于加工、灭菌;可制成缓释剂,以延长疗效;对所包药物有保护作用,可防止氧、介质和体内酶对药物的破坏;选用适当囊材又可达到生物相容,能在体内生物降解,从而减少毒副作用。如最近日本研究人员将抗癌药制成毫微囊,可定点将药物直接送到癌灶。这种包着药的高分子微胞进入血液后,在正常血管中是很难泄漏出来的,但是癌变组织周围的血管容易渗出大分子,所以这些带药的高分子微胞运行到癌变部位时,就会从血管里渗出来,滞留在那里,因而使药物具有了极强的靶向性[11]。

5纳米微乳化技术和微乳剂

纳米微乳化技术是指将油、水、乳化剂和助乳化剂按一定比例在一定温度下通过适当方法混合成外观透明的胶体分散系统的技术。微乳液是由油、水、表面活性剂和表面活性剂助剂构成的透明液体,是一类各向同性、粒径为纳米级的、热力学、动力学稳定的胶体分散体系。由于微乳液的液滴在纳米尺寸范围内,所以又称为纳米液滴或纳米乳液。微乳液小球的粒径小于100nm,所以微乳液呈透明或微蓝色;一般乳液小球的粒径为100~500nm,所以乳液是浑浊或半透明的。通过微乳液聚合的方法可以得到尺寸分布较窄的高分子纳米颗粒,这种纳米高分子材料具有一些崭新的性质和功能。据文献报道,已用微乳液制备的纳米粒子有金属纳米粒子(Pt、Pa、Rh、Ir等),半导体纳米粒子(CdS、PbS)、Ni、Co等金属的硼化物,SiO2、Fe2O3等氧化物、磁性材料等,其中某些纳米金属粉末可作为制备动物生长素药物的新型添加剂,还可用于免疫分析[12~15]。此外,微乳液本身可以作为溶剂应用。微乳液在相同溶液里能溶解不同极性的很多材料。这种独特的溶解性使微乳液能够应用于药物缓慢释放体系、生物工程上的细胞色素分离、生物转变、生物酶催化有机合成等许多方面,如紫杉醇自乳化微乳的制备及其在大鼠体内的药动学[16]。

6脂质体

脂质体(Liposome)系将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状药物载体。脂质体根据其结构和所包含的双层磷脂膜层数,可分为单室脂质体和多室脂质体。凡由一层类脂质双分子层构成者,称为单室脂质体,它又分为大单室脂质体和小单室脂质体(粒径0.02~0.08nm,可称为纳米脂质体)。由多层类脂质双分子层构成的称为多室脂质体,粒径1~5μm。由于其结构类似于生物膜,可包封水溶性和脂溶性药物,选择性高,靶向性强,具有减少药物剂量、降低毒副作用、无免疫原性、缓慢释放、降低体内消除速度、保护药物、提高稳定性、适合多途径给药等特点,含有药物脂质体的制剂在医药界得到了日益广泛的关注。如靶向性制剂人参皂苷脂质体、丹参多相脂质体、黄芩前体脂质体的研究[17];鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[18];甘露聚糖修饰的靶向纳米脂质体的抗肿瘤作用实验研究[19]等。

7聚合物纳米粒

聚合物纳米粒作为一种高效、毒副作用低的靶向药物载体,近十年来受到了广泛的关注[20]。药物与聚合物纳米粒的结合可以是包封,也可以是附载,前者形成毫微囊,后者形成分散体,这两种形式的聚合物纳米粒作为口服蛋白、多肽、基因等药物的载体,已有文献报道[21]。聚合物纳米粒具有以下优点:①高载药量(包封率)及控制释放特性;②纳米粒表面容易改性,使之不易团聚、在水中形成稳定的分散体;③为生物相容和可降解材料;④聚合物本身经化学改性后,具有两亲性,在制备纳米微粒时,可不再用表面活性剂(而大多数表面活性剂均为非生物相容)。聚合物纳米粒在化学合成药物及蛋白类药物领域里的成功应用,已有大量文献报道,这些药的新剂型应用是可行的,但在中药领域里的应用却较少报道。徐辉碧、杨祥林、谢长生等[22]认为聚合物纳米粒作为中药的新剂型应用是可行的。

8结语

纳米技术在中药剂型改造中的应用,将极大地丰富中药的剂型,为提高临床疗效提供了保证,并有利于降低药物的毒副作用,使中药具有一定的缓释性和一定的组织靶向性。目前我国的中药产业所以尚未走出困境,在很大程度上是因为中药剂型改造的进展缓慢。纳米技术的介入,在促进新剂型开发应用的同时,使中药制剂工艺避免了传统中药及其复方在加工过程中繁琐的处理工序,从而有利于对制剂质量的控制,促进中药生产走向工程化、标准化和规模化,并有望将中药制成高效、速效、长效、剂量小、毒性小、副作用小、服用方便的现代制剂,符合并达到国际主流市场对产品的标准和要求,最终实现中药产业的现代化和国际化。

参考文献

[1]张立德(ZhangLD),牟季美(MouJM).纳米材料和纳米结构.科学出版社,2000:2-3.

[2]徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用.中国药科大学学报,2001,32(3):161-165.

[3]杨祥良(YangXL),徐辉碧(XuHB),谢长生(XieCS),等.基于纳米技术的中药基础问题研究.华中理工大学学报(JHuazhongUnivSci&Tech),2000,28(12):104-105.

[4]周云中,姜志勇.纳米材料与中医药研发.中国中医药信息杂志,2001,8(9):7.

[5]储茂泉,刘颂,古宏展,等.丹参酮固体分散物的研究.华东理工大学学报,2001,27(2):191.

[6]张卫东,刑建国.维感颗粒中挥发油β-环糊精包合物制备及稳定性研究.中成药,2005,27(5):515-517.

[7]纪明慧,刘红,何猛雄等益智挥发油β-环糊精包合物的稳定性考察.中药材,2005,28(10):952-953.

[8]徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用.中国药科大学学报,2001,32(3):161-165.

[9]王建新,张志荣.固体脂质纳米粒的研究进展.中国药学杂志,2001,36(2):73-75.

[10]黎洪珊,赵京玲,魏树礼.环孢菌素A聚乳酸纳米粒胶体的制备和大鼠的口服吸收.中国药学杂志,1999,34(8):532-536.

[11]顾琳慧.日本开发纳米技术抗癌药投药方法.中国肿瘤,2001,10(8):479.

[12]胡文军,陈晓丽.微乳液和有机凝胶的性质及应用.材料导报,1997,11(1):53-56.

[13]贾世军,陈柳生,金熹高.微乳液聚合和寡链高分子凝聚态研究进展.功能高分子学报,1997,10(3):408-417.

[14]RibriouxS,KleymannG,WinfriedH,etal.UseofNanogold-andFluorescent-labeledAntibodyFvFragmentsinImmunocytochemistry.JHistochemCytochem,1996,44(3):207-213.

[15]Y.Uchiumi.Oxide-basedCompositeCeramicsContainingNano-sizedCarbidesandNitrides[P].JP08081277,1996.

[16]张学农,唐丽华,阎雪莹,等.紫杉醇自乳化微乳的制备及其在大鼠体内的药动学.中国新药与临床杂志,2005,24(4):294-298.

[17]靳琦,胡定邦,王子炎.论中医现代研究的基本思路.中国医药学报,2000,15(2):57-61.

[18]罗琥捷,李临生.鱼腥草挥发油纳米脂质体的制备及其肺靶向效果.时针国医国药,2006,17(1):56-57.

[19]杨莉,成丽,田聆,等甘露聚糖修饰的靶向纳米脂质体的抗肿瘤作用实验研究.四川大学学报(医学版),2006,37(3):357-360.

[20]KreuterJ,Nanoparticles.In:KreuterJ.(Ed.).ColloidalDrugDeliverySystems.NewYork:MarcelDekker,1994,219-342.

更多范文

热门推荐