化学概念的教学策略范例(3篇)

时间:2024-07-29

化学概念的教学策略范文

论文摘要:提出要重视中学化学基本概念与基础理论的教学策略,探索、实践并总结了基本概念和基础理论教学的不同策略和多种方式。

在初中化学新课程实施及上一轮高中化学新教材实施过程中,化学教育界积累了一定的研究落实新课程、推进新课程的经验,但也发现了一些问题。其中,对化学基本概念和基础理论的教学存在着以下问题:部分教师不注重联系实际创设情境,教学内容缺少时代性、人文性和教育性,教学模式僵化、方法单调,学生学习比较被动,缺少自主学习、合作学习和探究学习过程,思维层次低,学生觉得化学基本概念和基础理论枯燥无味,缺乏兴趣,难以生动、活泼、主动地学习和发展。

《普通高中化学课程标准(实验)》认为:教师不再是代表权威的指导者,而是学生学习化学的咨询者、引导者、帮助者和促进者。教师应该引导学生进行自主学习、探究学习和合作学习,帮助学生形成终身学习的意识和能力;引导学生像科学家那样去探究化学科学的真谛,像科学家那样去学习化学科学知识;培养学生的科学学习方法和创新意识;让课堂成为一个师生、生生互动交流、积极探讨、共同发展的场所,学生发现问题、分析问题、解决问题的场所,构建“知识与能力、过程与方法、情感态度与价值观”的场所。因此,我们在化学基本概念和基础理论教学设计时,要以学生为中心,尽可能地挖掘教材,帮助学生发现概念之美,感受理论之实,增加学生的认知体验,把学生能力的培养落到实处。

为此,我们设计采用了“化学史引入”等教学策略和方式。实践显示,合理使用多种策略和方式,可以较好地帮助学生发现概念之美,感受理论之实,进而激发学生学习化学基本概念和基础理论的兴趣,提高化学课堂教学的效益。

1化学史引入:原来概念与理论是这样产生的

知道化学概念和理论的历史背景、来龙去脉,可以增进对化学知识的理解;化学史既是化学发展演变的历史,也是化学科学思想的演变和再现,有助于培养学生思想品德;运用化学家的故事、生平、轶事等,可以激发学生的学习兴趣,创设新异的情境,提高教学效果;化学家们坚持实践百折不挠的科学精神和勇于探索大胆创新的科学态度,还可以培养学生的科学精神。

如在介绍元素周期律的发现时,把老高中教材(人民教育出版社,下同)中关于从18世纪中叶到19世纪中叶的100年间,随着科学技术的发展,新的元素不断地被发现,有关元素分类的假设——三素组、八音律、门氏周期表的相关内容(详情略)打印在学案上供学生阅读与体会。

20世纪以来,随着科学技术的发展,人们对于原子的结构有了更深刻的认识。人们发现,引起元素性质周期性变化的本质原因不是相对原子质量的递增,而是核电荷数(原子序数)的递增,也就是核外电子排布的周期性变化。这样才把元素周期律修正为现在的形式,同时对于元素周期表也做了许多改进,如增加了0族。

学生通过以上阅读,明白了科学家也走过弯路,进而减轻了对概念和理论的陌生感和畏惧感。此时,再加上教师的讲解与提示提问,学生不仅能够了解到元素周期律的诞生发展的较完整的过程,更好地理解和把握元素周期律的实质,而且可以体会到前人在科学方法、创新意识方面的努力,进而激发自己的学习兴趣与动力。

2实验“形象化”:原来概念与理论是形象实在的

在对元素周期律的“同周期元素的性质递变”进行教学时,我们不仅安排学生分组做了Na、Mg、Al及其化合物的常规实验,还设计了它们对应的最高价氧化物的水化物的pH值的测定实验。通过直观的现象的鲜明对比,学生了解了Na、Mg、Al的化学活泼性的差异。而通过定量的pH值的测量,学生感言“仿佛看到了逐渐活泼的Al、Mg、Na在以不同的速率跳动!”

在对氧化还原反应进行教学时,如何让学生真正理解其电子转移的实质,一直困惑着我们。在深入研究新教材的基础上,为了解决“通过实验来证明电子转移”的问题,我设计了Zn-Cu原电池的实验,电流表指针的偏转表明了电子转移的结果——电流的产生。再配上精心选取的FLASH动画演示。在此基础上,还补充了老教材上的“氧化还原指示剂”实验:“把4g葡萄糖和4gNaOH加入一个透明带盖的塑料瓶中,再加入大半瓶水和2~3滴亚甲基蓝试液(一种氧化还原指示剂)。加盖后振荡,溶液呈蓝色,静置后溶液变为无色,再振荡溶液又变为蓝色,静置后又变为无色,这个颜色变化过程可以多次重复。”学生很快就能分析出氧气是氧化剂,葡萄糖显还原性。

3适时穿插练习:原来概念与理论的应用是有规律可循的

在讲授“元素周期表和元素周期律的应用”时,从教学目标的确定开始就注意贴近学生实际,注重知识的应用与做题的反思体会,使每一个教学目标都有对应的达成措施,把对学生的创新能力、创新意识的培养落到实处。

为了讲解“位—构—性”的关系,我们设计了如下练习:

[练习1]:2004年,某甲宣布发现了一种比F2氧化性更强的单质,某乙宣布制得了一种比HF更稳定的气态氢化物。试判断其可信度并分析应用了什么知识?

[解答]:都不可信

[分析]:1.第一周期元素中非金属性最强的是F,卤族元素中非金属性最强的也是F,因此F是所有元素中非金属性最强的。2.元素的非金属性强弱体现在物质的化学性质上:①单质与氢气反应的难易;②气态氢化物的稳定性;③最高价氧化物对应的水化物的酸性强弱。

[练习2]:下列叙述中正确的是

A.原子半径:O

B.金属性:Na>Mg>Al

C.稳定性:H2O>H2S>H2Se

D.酸性:H3PO4>H2SO4>HClO4

分析:应用了什么知识?

[解答]:B、C

[分析]:A应用同周期、同主族元素原子半径的变化规律。B应用同周期元素金属性的变化规律。C、D应用同主族元素非金属性的变化规律。

[练习3]:填“>”、“=”、“

A.碱性:Mg(OH)2__Ca(OH)2

B.酸性:H2CO3__H3PO4

C.酸性:HF__HCl

D.溶解性:Ca(OH)2__Ba(OH)2

体会:应用了什么知识?

[解答]:A、

[分析]:A、应用同主族元素金属性的变化规律。B、应用周期性知识无法解答,可从已知知识H2CO3是弱酸、H3PO4是中强酸解决。C、比较元素非金属性强弱应用最高价氧化物对应的水化物的酸性强弱,而不是无氧酸的酸性强弱;HF与HCl的酸性强弱不知,但可从第六主族氧与硫的氢化物的酸性强弱推出规律。D、在水中的溶解性不是元素金属性强弱的判断依据,但也有一定的规律性;已知Ca(OH)2微溶,Mg(OH)2难溶,即使不太知道Ba(OH)2可溶,也可以得出规律进而做出解答。

[点评]:通过新旧知识的整合来解决问题,这也是一种创新。

[练习4]:下列可以说明硫的非金属性比氧弱的是

体会:应用了什么知识?

[解答]:A、B、C、D

[分析]:判断元素的性质强弱,不仅可以应用周期律知识,还可以应用氧化还原知识。

[练习5]:按半径从小到大排列下列微粒

A组:S、Cl、K、Ca

[解答]:Cl

[分析]:影响元素原子半径的因素

①电子层数。例:O

②核电荷数。例:S>Cl

应用以上得出的规律解答B组:

S-2、Cl-、K+、Ca2+

[解答]:Ca2+

[分析]:先比较电子层数,电子层数相同再比较核电荷数。

[补充]:③(同一元素不同离子)电荷高半径小。例:Fe2+>Fe3+

通过对教师精选练习的解答与分析,再加上同伴和教师的补充,在不知不觉中,学生对相应知识点的掌握达到了预期的程度。

4联系STSE:原来概念与理论是实用的

科学(Science)、技术(Technology)与社会(Society)教育,即“STS教育”是当代科学教育实践的重要理念,环境(Environment)教育则是公民科学素养教育的一个重要组成方面。由科学、技术、社会、环境构成的STSE教育强调科学、技术与社会、环境的相互关系,重视科学技术在社会生产、生活环境和社会发展中的应用,是指导和实施学科教育的新理念。STSE教育的显著特征是把当今与科技相关的重大社会问题及具有地方影响的问题纳入教育特别是科学课程之中,包括科技的应用问题、科技发展动向问题和科技的社会伦理问题等。当学生看见所学知识在许多方面都有应用时,就会涌现出一股强烈的求知欲望,在化学学习中表现出前所未有的自觉性和主动性。

如在讲解氧化还原反应的应用时,我们选取了“石油化工科技网”上的一条信息作为素材:

用于汽车尾气处理的催化剂

专利申请号:03120993.9

授权公告日:2005.02.16

该催化剂是消除汽车尾气中NOx(如NO)的催化剂,在不加任何其他物质的情况下,将污染物质氮氧化合物和一氧化碳转化为无毒气体,达到对氮氧化合物、一氧化碳综合处理的目的。该催化剂对NOx的转化率最高可达55.6%,而且稳定性好,寿命长,有良好的抗中毒特性。

思考:汽车尾气中含有CO和NO,它们在转化成无毒气体时,从氧化还原反应角度看分别表现了什么性质。

学生在顺利解答完之后,得出结论:可以利用物质中元素所处的价态,推测它可能具有的氧化还原性。同时,学生感慨:原来概念与理论真的是实用的!我一定要学它!

5联系对比:原来概念与理论是相联相通的

通过小结,学生“发现”了金属与非金属的对应规律:同周期从左向右,元素的金属性越来越弱,而非金属性则越来越强;同主族元素的性质也有一定的递变规律。不仅如此,元素对应的单质、化合物的物理化学性质也有各种各样的对应关系。受此启发,学生对下表的空格做出合理的解释。

学生解释为:Na是金属单质,能与非金属单质反应,Cl2是非金属单质,能与金属单质(与非金属单质相反)反应;Na能与酸反应,Cl2能与碱(与酸相反)反应;水、盐无相反概念,故Na、Cl2都与二者反应。唯一不对应的是非金属单质能与非金属单质反应,而金属单质与金属单质不反应,对应得似乎不够工整。实际上,两种非金属单质反应时,必有一种较弱的非金属单质显金属性,而两种金属单质不能反应的原因是因为金属单质不能显非金属性。

在此基础上,学生对金属的知识主线:

单质氧化物对应水化物对应盐

对应盐氢化物单质氧化物对应水化物对应盐

如:NaClHClCl2Cl2OHClONaClO

也就有了更深刻的理解和更深入的把握:由于Cl的正价较多,还可以把Cl2右边的知识主线写出更多的来。如:Cl2??KClO3或Cl2ClO2??等。从知识主线看,由于金属没有负价,金属知识主线比非金属知识主线少了左半边,对应得并不工整。虽然也有的题目中会出现金属氢化物如NaH,但Na仍为+1价,H为-1价,并不是通常意义上的氢化物(二元素组成,氢为+1价)。

6尝试创造:原来概念与理论是可以由我发展的

对于元素周期律的理解,教师不应满足于学生只掌握书本和教师提供的知识。在做题的实践与反思中,教师还应引导学生学习推导出“自己的规律”。如通过Mg、Ca、Ba对应的碱和硫酸盐的溶解性的比较,可以得出同一主族元素对应的碱在水中的溶解性从上往下越来越大,而硫酸盐的溶解性从

上往下越来越小;通过课本提供的“同主族元素非金属性从上往下越来越弱”,不仅可以推出课本上提供的“最高价含氧酸的酸性越来越弱”,还可以导出其对应的“无氧酸的酸性越来越强”,如HBr的酸性比HCl强;凡此等等,不一一赘述。通过这些尝试与创造的体验,学生感慨:原来概念与理论也可以由我提出由我发展!

化学实验新奇有趣,学生接触化学的初始阶段,教师要较多地用实验激发学生的学习兴趣,但随着学习的深入,教师更应及时揭示化学概念与理论的迷人魅力,帮助学生感受化学概念与理论的优美与实在。唯有如此,学生学习化学的兴趣才会持久,才能从化学学习中获得更多的乐趣!学习化学也就成了学生一种持久的乐趣、一种幸福的享受、一种自觉的追求。

参考文献

[1]钟启泉,崔允漷,张华.《基础教育课程改革纲要(试行)》解读.上海:华东师范大学出版社,2001.

化学概念的教学策略范文

关键词:化学概念;概念转变;PEODE策略

文章编号:10056629(2012)4000603中图分类号:G633.8文献标识码:B

1问题的提出

在教学过程中,经常发现不同的学生对同一概念可能会有不同的理解,而且他们对概念的理解多与科学的化学概念有所偏差。学生可能记住了化学概念的定义,但并没有真正理解概念的实质,存在着一些模糊甚至是错误的认识。这些与科学概念不一致的认识称为“迷思概念”[1]。值得注意的是,这里的“概念”是指关于某一对象的观点、看法。传统的教学往往忽视学生的迷思概念,将科学概念直接灌输给学生,教学效果却总是不理想。这是因为学生的迷思概念是经过长期发展形成的,仅依靠简单的科学概念灌输并不能有效地促使迷思概念发生转变。因此,优化化学概念转变教学已成为摆在我们眼前的一个很重要的课题。

2PEODE策略的探索

2.1概念转变与POE策略

近年来,研究者对迷思概念的转变给予了高度重视,并进行了大量研究。1982年,波斯纳(Posner)等人结合皮亚杰的认知建构主义理论以及库恩的“范式更替”理论,提出了著名的“概念转变学习理论”,并总结出影响迷思概念转变的四个条件:对原有概念感到不满;新的概念必须是可理解的;新的概念必须是合理的;新的概念必须能够适用更大的范围[1]。该理论认为科学概念的学习就是学生原有的迷思概念通过发展、改变和重建为科学概念的过程,其基本策略就是在了解学生迷思概念的前提下,引发学生的认知冲突,改变学生原有的认知结构以实现概念转变学习。Gunstone和White于1992年在DOE(demonstrate-observeexplain的缩写,即演示―观察―解释)教学策略的基础上正式提出了POE(predict-observe-explain的缩写,即预测―观察―解释)的教学策略。POE是一种以“观察渗透理论”的哲学观念和建构主义、人本主义、概念转变等理论为基础的新型演示策略[2]。相对于灌输式的DOE策略,POE策略重视学生的预测,因此能有效地揭示学生的迷思概念,也能有效提升学生的概念学习以及科学学习兴趣[3];POE策略在承认学生具有迷思概念的前提下,认为教学过程是学生的认知被不断否定的过程,预测为学生迷思概念的自由表达提供了平台,实验演示为学生的认知发生冲突提供了机会,解释为实现学生的概念转变提供了条件[3]。

2.2PEODE策略的探索

新课程强调学生学习的自主性、合作性和探究性,而课堂讨论就是一种改变封闭状态的重要教学形式。课堂讨论不仅能够活跃课堂气氛,而且能激发学生兴趣,促使学生主动参与教学过程,培养他们与人合作交流、创新思维与能力等方面的素质。而在对POE策略相关文献的研究过程中,笔者发现,尽管SavanderRanne.C.和Kolari.S.(2003)[4]提出的PDEODE策略已经重视了学生的讨论,但目前绝大多数的研究,尤其是国内的研究还是对学生的预测和实验演示给予了较多的关注,但对学生的解释和实验前后的讨论缺乏足够的重视。笔者认为这两个环节的忽视,会在一定程度上干扰学生迷思概念的转变。对于学生的预测要给他们解释的空间,这样就能牵出更多的迷思概念;对于某一问题,教师要引导学生与他人交流、合作与讨论,这样叙述者就可以借着口头表达的过程重新整理自己原有的认知,而听者则能将其与自身的理解结合并进一步调和矛盾。当学生发现他人观点与自己不同,且比自己的观点更加适合解决问题时,往往会对自己的观念感到怀疑,产生认知冲突和求知心理,这时学生就较易接受新的、正确的科学概念。丹瑟里恩(Danswerrean,1993)的一项研究也表明:合作学习能使学生超越自己的认识,通过他人与自己不同的观点,看到事物的其他方面,从而形成对事物更加丰富的了解,有助于克服学生的迷思概念[5]。

综上所述,笔者结合多年的教学经验及国内外的相关研究成果,在教学实践中不断思考、探索,尝试了更重视学生的解释和讨论的PEODE策略(predictexplain-observe-discuss-explain的缩写,即预测―解释―观察―讨论―解释),并取得了良好的教学成效。

3PEODE策略的操作步骤和要点

3.1P-预测阶段

教师陈述问题或展示实验设备并说明流程,学生预测实验现象。此阶段要求教师能通过多年教学经验的积累、文献研究等方法全面了解和准确把握学生可能存在的迷思概念,以此为依据来创设合理的问题情境。

3.2E-解释预测阶段

学生向全班对自己的预测做出解释。为了使学生通过解释暴露出更多的迷思概念,教师要努力营造民主、宽松的学习氛围,使学生能无拘无束地表达[3]。教师应以称赞、鼓励为主,不要过早地评价学生的观点,也不能对学生的错误观点进行讽刺或挖苦。对于学生暴露出的各种迷思概念,教师应能准确地判断出其实质、产生的原因及其合理性和局限性,为学生认知发生冲突创造条件。

3.3O-观察阶段

进行实验,观察、记录实验现象,比较预测和观察之间的差异。在观察实验现象时,由于学生很想知道自己的预测是否正确,因此注意力会很集中。所以,为了激发学生学习的积极性,教师在演示实验的过程中要尽可能地让每个学生清楚地观察到现象[6]。必要时还可以借助多媒体技术提高实验的可见度和清晰度,从而增强PEODE策略的教学效果。

3.4D-讨论

当实验现象和学生的预测有明显差异时,学生会因认知失衡而产生“紧张感”。为了消除这种“紧张感”,学生就会努力寻求答案,自然就会产生强烈的和老师或同学交流的愿望。这时教师就要因势利导,通过问题中介,营造全员交流、人人参与的学习氛围。鼓励学生之间、师生之间进行平等的对话和交流,使学生的错误概念在思维的相互碰撞过程中不断地被瓦解。此阶段教师切忌急于把讨论引导到自己设计的标准答案上去,切忌用自己的思想去“同化”学生的迷思概念,而应站在学生的立场去“顺应”他们的认识[7]。在这种冲突、商讨和交流的过程中,讨论后的解释也就呼之欲出了。

3.5E-实验后的解释阶段

经过交流和讨论,学生不断反思自己的认知,思考、调和观察与预测之间的不一致性并试图加以解释。但这一阶段学生的发言往往还是比较零碎和粗糙的,缺乏系统性。而许多倾听的学生由于缺乏一定的鉴别能力,很可能还会产生迷思概念。因此,最后教师有必要对他们的发言进行分析、加工和总结,这将有助于建立稳固且正确的科学概念。

4PEODE策略的运用例举

现以“浓硝酸的性质”的教学片段为例[8],具体谈谈如何在教学中运用PEODE策略。

4.1预测

[教师提示]现有两支相同的试管甲和乙,甲试管中放入已去除氧化膜的铝片,乙试管中放入铜片。根据你学过的金属和酸的性质,预测将浓硝酸分别加入到两支试管中可能产生的现象;如果都反应,哪支试管中的反应程度较剧烈?说出预测的理由。

[学生预测]学生的预测主要有以下三种情况:①甲试管中的铝片逐渐溶解,反应剧烈,产生气泡,而乙试管中没有现象;②两支试管中金属都溶解,均有气泡产生;甲试管中的反应更剧烈一些;③两支试管中都没有明显现象。

4.2解释

[学生解释]预测①的解释:因为硝酸具有酸的通性。在金属活动性顺序表中,铝排在氢之前,铜排在氢之后,所以只有甲试管中的铝片可以置换出H2;预测②的解释:初中老师提过,硝酸可以和很多不活泼的金属反应,只是不产生氢气。又因为铝比铜活泼,所以甲试管中反应更剧烈些;预测③的解释:我记得好像浓硝酸可以储存在铝桶里,所以铝应该不会和浓硝酸反应;铜在金属活动性顺序表中排在氢之后,当然不会和硝酸反应。

[学生表现]持不同意见的学生展开了激烈的争论,有的紧锁眉头,有的在翻书,还有同学说:“做个实验瞧瞧。”

通过上面两个阶段的教学活动,笔者发现了学生原来存在各种迷思概念:虽然大部分学生已经掌握金属活性顺序表和酸的通性,但对硝酸的性质了解得很少;部分学生已经将“铝常温下能被浓硝酸钝化”的知识遗忘了……

4.3观察

[实验演示]为了使后排的学生也能清晰地观察到实验现象,我在实物投影仪前演示了上述实验。

[学生表现]教室里非常安静,每个同学都屏气凝神地观察着。当学生看到铜片与浓硝酸剧烈地反应且产生了红棕色的气体,而铝片表面却没有现象时,他们都露出了惊讶和疑惑的表情,并自发地展开了讨论。

可以看出,当实验现象和学生的预测有明显差异时,学生产生了强烈的认知冲突和求知欲。

4.4讨论

教师要求学生根据观察到的现象进行讨论,并鼓励学生积极发言。经过讨论,学生从已学过的铜可以和浓硫酸反应的事实推测:浓硝酸也可能具有强氧化性;通过查阅教材,他们了解到浓硝酸常温下使铝钝化的原因。通过思维交流和碰撞,大部分学生能从气体的颜色和元素种类去推测红棕色的气体不是无色的氢气、氧气、氮气或氨气,而可能是含氮元素的某种化合物。

4.5实验后的解释

[教师解释]硝酸是一种氧化性很强的酸,能与除金、铂等少数金属以外的金属反应。但常温下,铝遇到浓硝酸时会在表面生成致密的氧化膜而发生钝化,从而阻止内部金属进一步发生反应。

还可以进一步提出问题:“如果将放有铝片试管加热或加水稀释后会有什么现象呢?”以激发学生继续学习的兴趣,深化学生对浓硝酸性质的理解。

总之,PEODE策略可以有效探测学生的迷思概念,通过实验演示引发认知冲突,通过讨论和解释促使学生反思、调和认知冲突,构建科学概念。PEODE策略下的学习是自主、合作、探究的学习,实践表明它能明显提高学生学习化学的兴趣和效率,有助于提升学生的概念学习和科学态度。因此,教师要扮演好组织者、引导者的角色,通过营造自由和宽松的氛围去激发学生的求知欲和表现欲,最大限度地发挥学生的潜能。

参考文献:

[1]任英杰.促进中小学生迷思概念转变的POE策略及案例分析[J].中小学电教,2007,(12).

[2]翁伟彬.POE策略在化学演示实验教学中的应用[J].中学化学教学参考,2010,(4).

[3]顾江鸿,史小梅,李春密.预测―观察―解释―一种基于现代教育研究的演示策略[J].教育科学研究,2009,(5).

[4]Savander-Ranne,C.&Kolari,S.Promotingtheconceptualunderstandingofengineeringstudentsthroughvisualization[J].GlobalJournalofEngineeringEducation,2003,7(2):189~199.

[5]邹蓁,宋君.中学生常见生物迷思概念及其转化策略的研究[EB/OL].,2011-7-24.

[6]林雪梅,张军朋.“POE”教学策略及其在物理教学中的应用[J].物理教学探讨,2011,(4).

化学概念的教学策略范文篇3

关键词:基本概念;基础理论;教学策略

文章编号:1005-6629(2007)08-0003-04中图分类号:G633.8文献标识码:B)

在初中化学新课程实施及上一轮高中化学新教材实施过程中,化学教育界积累了一定的研究落实新课程、推进新课程的经验,但也发现了一些问题。其中,对化学基本概念和基础理论的教学存在着以下问题:部分教师不注重联系实际创设情境,教学内容缺少时代性、人文性和教育性,教学模式僵化、方法单调,学生学习比较被动,缺少自主学习、合作学习和探究学习过程,思维层次低,学生觉得化学基本概念和基础理论枯燥无味,缺乏兴趣,难以生动、活泼、主动地学习和发展。

《普通高中化学课程标准(实验)》认为:教师不再是代表权威的指导者,而是学生学习化学的咨询者、引导者、帮助者和促进者。教师应该引导学生进行自主学习、探究学习和合作学习,帮助学生形成终身学习的意识和能力;引导学生像科学家那样去探究化学科学的真谛,像科学家那样去学习化学科学知识;培养学生的科学学习方法和创新意识;让课堂成为一个师生、生生互动交流、积极探讨、共同发展的场所,学生发现问题、分析问题、解决问题的场所,构建“知识与能力、过程与方法、情感态度与价值观”的场所。因此,我们在化学基本概念和基础理论教学设计时,要以学生为中心,尽可能地挖掘教材,帮助学生发现概念之美,感受理论之实,增加学生的认知体验,把学生能力的培养落到实处。

为此,我们设计采用了“化学史引入”等教学策略和方式。实践显示,合理使用多种策略和方式,可以较好地帮助学生发现概念之美,感受理论之实,进而激发学生学习化学基本概念和基础理论的兴趣,提高化学课堂教学的效益。

1化学史引入:原来概念与理论是这样产生的

知道化学概念和理论的历史背景、来龙去脉,可以增进对化学知识的理解;化学史既是化学发展演变的历史,也是化学科学思想的演变和再现,有助于培养学生思想品德;运用化学家的故事、生平、轶事等,可以激发学生的学习兴趣,创设新异的情境,提高教学效果;化学家们坚持实践百折不挠的科学精神和勇于探索大胆创新的科学态度,还可以培养学生的科学精神。

如在介绍元素周期律的发现时,把老高中教材(人民教育出版社,下同)中关于从18世纪中叶到19世纪中叶的100年间,随着科学技术的发展,新的元素不断地被发现,有关元素分类的假设――三素组、八音律、门氏周期表的相关内容(详情略)打印在学案上供学生阅读与体会。

20世纪以来,随着科学技术的发展,人们对于原子的结构有了更深刻的认识。人们发现,引起元素性质周期性变化的本质原因不是相对原子质量的递增,而是核电荷数(原子序数)的递增,也就是核外电子排布的周期性变化。这样才把元素周期律修正为现在的形式,同时对于元素周期表也做了许多改进,如增加了0族。

学生通过以上阅读,明白了科学家也走过弯路,进而减轻了对概念和理论的陌生感和畏惧感。此时,再加上教师的讲解与提示提问,学生不仅能够了解到元素周期律的诞生发展的较完整的过程,更好地理解和把握元素周期律的实质,而且可以体会到前人在科学方法、创新意识方面的努力,进而激发自己的学习兴趣与动力。

2实验“形象化”:原来概念与理论是形象实在的

在对元素周期律的“同周期元素的性质递变”进行教学时,我们不仅安排学生分组做了Na、Mg、Al及其化合物的常规实验,还设计了它们对应的最高价氧化物的水化物的pH值的测定实验。通过直观的现象的鲜明对比,学生了解了Na、Mg、Al的化学活泼性的差异。而通过定量的pH值的测量,学生感言“仿佛看到了逐渐活泼的Al、Mg、Na在以不同的速率跳动!”

在对氧化还原反应进行教学时,如何让学生真正理解其电子转移的实质,一直困惑着我们。在深入研究新教材的基础上,为了解决“通过实验来证明电子转移”的问题,我设计了Zn-Cu原电池的实验,电流表指针的偏转表明了电子转移的结果――电流的产生。再配上精心选取的FLASH动画演示。在此基础上,还补充了老教材上的“氧化还原指示剂”实验:“把4g葡萄糖和4gNaOH加入一个透明带盖的塑料瓶中,再加入大半瓶水和2~3滴亚甲基蓝试液(一种氧化还原指示剂)。加盖后振荡,溶液呈蓝色,静置后溶液变为无色,再振荡溶液又变为蓝色,静置后又变为无色,这个颜色变化过程可以多次重复。”学生很快就能分析出氧气是氧化剂,葡萄糖显还原性。

3适时穿插练习:原来概念与理论的应用是有规律可循的

在讲授“元素周期表和元素周期律的应用”时,从教学目标的确定开始就注意贴近学生实际,注重知识的应用与做题的反思体会,使每一个教学目标都有对应的达成措施,把对学生的创新能力、创新意识的培养落到实处。

为了讲解“位―构―性”的关系,我们设计了如下练习:

[练习1]:2004年,某甲宣布发现了一种比F2氧化性更强的单质,某乙宣布制得了一种比HF更稳定的气态氢化物。试判断其可信度并分析应用了什么知识?

[解答]:都不可信

[分析]:1.第一周期元素中非金属性最强的是F,卤族元素中非金属性最强的也是F,因此F是所有元素中非金属性最强的。2.元素的非金属性强弱体现在物质的化学性质上:①单质与氢气反应的难易;②气态氢化物的稳定性;③最高价氧化物对应的水化物的酸性强弱。

[练习2]:下列叙述中正确的是

A.原子半径:O

B.金属性:Na>Mg>Al

C.稳定性:H2O>H2S>H2Se

D.酸性:H3PO4>H2SO4>HClO4

分析:应用了什么知识?

[解答]:B、C

[分析]:A应用同周期、同主族元素原子半径的变化规律。B应用同周期元素金属性的变化规律。C、D应用同主族元素非金属性的变化规律。

[练习3]:填“>”、“=”、“

A.碱性:Mg(OH)2__Ca(OH)2

B.酸性:H2CO3__H3PO4

C.酸性:HF__HCl

D.溶解性:Ca(OH)2__Ba(OH)2

体会:应用了什么知识?

[解答]:A、

[分析]:A、应用同主族元素金属性的变化规律。B、应用周期性知识无法解答,可从已知知识H2CO3是弱酸、H3PO4是中强酸解决。C、比较元素非金属性强弱应用最高价氧化物对应的水化物的酸性强弱,而不是无氧酸的酸性强弱;HF与HCl的酸性强弱不知,但可从第六主族氧与硫的氢化物的酸性强弱推出规律。D、在水中的溶解性不是元素金属性强弱的判断依据,但也有一定的规律性;已知Ca(OH)2微溶,Mg(OH)2难溶,即使不太知道Ba(OH)2可溶,也可以得出规律进而做出解答。

本文为全文原貌未安装PDF浏览器用户请先下载安装原版全文

[点评]:通过新旧知识的整合来解决问题,这也是一种创新。

[练习4]:下列可以说明硫的非金属性比氧弱的是

体会:应用了什么知识?

[解答]:A、B、C、D

[分析]:判断元素的性质强弱,不仅可以应用周期律知识,还可以应用氧化还原知识。

[练习5]:按半径从小到大排列下列微粒

A组:S、Cl、K、Ca

[解答]:Cl

[分析]:影响元素原子半径的因素

①电子层数。例:O

②核电荷数。例:S>Cl

应用以上得出的规律解答B组:

S-2、Cl-、K+、Ca2+

[解答]:Ca2+

[分析]:先比较电子层数,电子层数相同再比较核电荷数。

[补充]:③(同一元素不同离子)电荷高半径小。例:Fe2+>Fe3+

通过对教师精选练习的解答与分析,再加上同伴和教师的补充,在不知不觉中,学生对相应知识点的掌握达到了预期的程度。

4联系STSE:原来概念与理论是实用的

科学(Science)、技术(Technology)与社会(Society)教育,即“STS教育”是当代科学教育实践的重要理念,环境(Environment)教育则是公民科学素养教育的一个重要组成方面。由科学、技术、社会、环境构成的STSE教育强调科学、技术与社会、环境的相互关系,重视科学技术在社会生产、生活环境和社会发展中的应用,是指导和实施学科教育的新理念。STSE教育的显著特征是把当今与科技相关的重大社会问题及具有地方影响的问题纳入教育特别是科学课程之中,包括科技的应用问题、科技发展动向问题和科技的社会伦理问题等。当学生看见所学知识在许多方面都有应用时,就会涌现出一股强烈的求知欲望,在化学学习中表现出前所未有的自觉性和主动性。

如在讲解氧化还原反应的应用时,我们选取了“石油化工科技网”上的一条信息作为素材:

用于汽车尾气处理的催化剂

专利申请号:03120993.9

授权公告日:2005.02.16

该催化剂是消除汽车尾气中NOx(如NO)的催化剂,在不加任何其他物质的情况下,将污染物质氮氧化合物和一氧化碳转化为无毒气体,达到对氮氧化合物、一氧化碳综合处理的目的。该催化剂对NOx的转化率最高可达55.6%,而且稳定性好,寿命长,有良好的抗中毒特性。

思考:汽车尾气中含有CO和NO,它们在转化成无毒气体时,从氧化还原反应角度看分别表现了什么性质。

学生在顺利解答完之后,得出结论:可以利用物质中元素所处的价态,推测它可能具有的氧化还原性。同时,学生感慨:原来概念与理论真的是实用的!我一定要学它!

5联系对比:原来概念与理论是相联相通的

通过小结,学生“发现”了金属与非金属的对应规律:同周期从左向右,元素的金属性越来越弱,而非金属性则越来越强;同主族元素的性质也有一定的递变规律。不仅如此,元素对应的单质、化合物的物理化学性质也有各种各样的对应关系。受此启发,学生对下表的空格做出合理的解释。

学生解释为:Na是金属单质,能与非金属单质反应,Cl2是非金属单质,能与金属单质(与非金属单质相反)反应;Na能与酸反应,Cl2能与碱(与酸相反)反应;水、盐无相反概念,故Na、Cl2都与二者反应。唯一不对应的是非金属单质能与非金属单质反应,而金属单质与金属单质不反应,对应得似乎不够工整。实际上,两种非金属单质反应时,必有一种较弱的非金属单质显金属性,而两种金属单质不能反应的原因是因为金属单质不能显非金属性。

在此基础上,学生对金属的知识主线:

单质氧化物对应水化物对应盐

对应盐氢化物单质氧化物对应水化物对应盐

如:NaClHClCl2Cl2OHClONaClO

也就有了更深刻的理解和更深入的把握:由于Cl的正价较多,还可以把Cl2右边的知识主线写出更多的来。如:Cl2??KClO3或Cl2ClO2??等。从知识主线看,由于金属没有负价,金属知识主线比非金属知识主线少了左半边,对应得并不工整。虽然也有的题目中会出现金属氢化物如NaH,但Na仍为+1价,H为-1价,并不是通常意义上的氢化物(二元素组成,氢为+1价)。

6尝试创造:原来概念与理论是可以由我发展的

对于元素周期律的理解,教师不应满足于学生只掌握书本和教师提供的知识。在做题的实践与反思中,教师还应引导学生学习推导出“自己的规律”。如通过Mg、Ca、Ba对应的碱和硫酸盐的溶解性的比较,可以得出同一主族元素对应的碱在水中的溶解性从上往下越来越大,而硫酸盐的溶解性从

上往下越来越小;通过课本提供的“同主族元素非金属性从上往下越来越弱”,不仅可以推出课本上提供的“最高价含氧酸的酸性越来越弱”,还可以导出其对应的“无氧酸的酸性越来越强”,如HBr的酸性比HCl强;凡此等等,不一一赘述。通过这些尝试与创造的体验,学生感慨:原来概念与理论也可以由我提出由我发展!

化学实验新奇有趣,学生接触化学的初始阶段,教师要较多地用实验激发学生的学习兴趣,但随着学习的深入,教师更应及时揭示化学概念与理论的迷人魅力,帮助学生感受化学概念与理论的优美与实在。唯有如此,学生学习化学的兴趣才会持久,才能从化学学习中获得更多的乐趣!学习化学也就成了学生一种持久的乐趣、一种幸福的享受、一种自觉的追求。

参考文献:

[1]钟启泉,崔允,张华.《基础教育课程改革纲要(试行)》解读.上海:华东师范大学出版社,2001.

[2]中华人民共和国教育部.普通高中化学课程标准(实验).北京:人民教育出版社,2003.

[3]胡久华.浅议高中化学新课程必修模块的教学策略.化学教学,2007,2:29-31.

更多范文

热门推荐